2、函數極限的運算法則
如果,
那么
說明:函數極限四則運算法則是以為前提的.
例如,求時,就不能把它變成
,因為x→1時,
的極限均不存在.
但.
1、函數極限的概念
(1)一般地,當自變量x取正值且無限增大時,如果函數y=f(x)的值無限趨近于一個常數A,就說當x趨向于正無窮大時,函數y=f(x)的極限是A,記作.
(2)一般地,當自變量x取負值而|x|無限增大時,如果函數y=f(x)的值無限趨近于一個常數A,就說當x趨向于負無窮大時,函數y=f(x)的極限是A,記作.
(3)一般地,當自變量x的絕對值無限增大時,如果函數y=f(x)的值都無限趨近于一個常數A,就說當x趨向于無窮大時,函數y=f(x)的極限是A,記作.
(4)一般地,當自變量x無限趨近于常數x0(但x≠x0)時,如果函數y=f(x)無限趨近于一個常數A,就說當x趨向于x0時,函數y=f(x)的極限是A,記作.
說明:(1)我們常把(1)(2)稱為函數的單側極限,我們通常通過解析式或函數圖象來判斷函數單側極限,函數的單側極限不一定同時存在,例如,給定函數f(x)=2x,顯然當x→+∞時,2x→+∞,即不存在,但
.
(2)函數f(x)當x→x0(或x→∞)時極限存在的必要且充分條件是:
x→x0+(或x→+∞)及x→x0-(或x→-∞)的極限各自存在并且相等,通常簡述為:左、右極限存在并且相等.
(3)當x→x0時f(x)在x0處是否有定義無關,因為x→x0并不要求x=x0.
(4)若函數f(x)在x=x0處及其附近有意義,且圖象在x=x0處不間斷,則.如
.
本講在上講已經學習數列的極限的基礎上來學習函數的極限,主要探討函數極限的概念及函數極限的運算法則,學會求函數的極限.
8.(★★★★★)________,I have never seen anyone who’s as capable as John.
A.As long as I have traveled
B.Now that I have travelled so much
C.Much as I have travelled
D.As I have travelled so much
7.(★★★★★)So badly________ in the accident that he was sent to the nearest hospital immediately.
A.he did injure B.he was injured
C.did he injure D.was he injured
6.(★★★★)After that we never saw her again nor________ here.
A.we heard B.have we heard
C.we had heard D.did we hear
5.(★★★★★)-“It was cold yesterday.”
-________.
A.It was so B.So it was C.It did so D.So it did
4.(★★★★★)________that we can’t catch up with him.
A.So fast did he run B.Fast as he ran
C.Fast he ran so D.He ran fast
3.(★★★★★)Now________ to look after the wounded.
es my turn
C.my turn came D.my turn is coming
2.(★★★★★)Autumn coming,down________.
A.the leaves full B.leaves falling
C.fall the leaves D.so the leaves full
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com