又
5.平面圖形的翻折與空間圖形的展開問題,要對照翻折(或展開)前后兩個圖形,分清哪些元素的位置(或數量)關系改變了,哪些沒有改變.
例題8
方法一:(1)證明:取OB中點E,連接ME,NE
4.與幾何體的側面積和體積有關的計算問題,根據基本概念和公式來計算,要重視方程的思想和割補法、等積轉換法的運用
3.空間圖形中的角與距離,先根據定義找出或作出所求的角與距離,然后通過解三角形等方法求值,注意“作、證、算”的有機統一.解題時注意各種角的范圍.異面直線所成角的范圍是0°<θ≤90°,其方法是平移法和補形法;直線與平面所成角的范圍是0°≤θ≤90°,其解法是作垂線、找射影;二面角0°≤θ≤180°。
2.證明空間線面平行與垂直,是必考題型,解題時要由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證明思路.
1、三視圖是新課標新增的內容,2007、2008年課改區的高考題都有體現,因此,三視圖的內容應重點訓練。
3.從能力上來看,著重考查空間想象能力,即空間形體的觀察分析和抽象的能力,要求是“四會”:①會畫圖――根據題設條件畫出適合題意的圖形或畫出自己想作的輔助線(面),作出的圖形要直觀、虛實分明;②會識圖――根據題目給出的圖形,想象出立體的形狀和有關線面的位置關系;③會析圖――對圖形進行必要的分解、組合;④會用圖――對圖形或其某部分進行平移、翻折、旋轉、展開或實行割補術;考查邏輯思維能力、運算能力和探索能力。
五、復習建議
2.從內容上來看,主要是:①考查直線和平面的各種位置關系的判定和性質,這類試題一般難度不大,多為選擇題和填空題;②計算角的問題,試題中常見的是異面直線所成的角,直線與平面所成的角,平面與平面所成的二面角,這類試題有一定的難度和需要一定的解題技巧,通常要把它們轉化為相交直線所成的角;③求距離,試題中常見的是點與點之間的距離,點到直線的距離,點到平面的距離,直線與直線的距離,直線到平面的距離,要特別注意解決此類問題的轉化方法;④簡單的幾何體的側面積和表面積問題,解此類問題除特殊幾何體的現成的公式外,還可將側面展開,轉化為求平面圖形的面積問題;⑤體積問題,要注意解題技巧,如等積變換、割補思想的應用。⑥三視圖,辨認空間幾何體的三視圖,三視圖與表面積、體積內容相結合。
1.從命題形式來看,涉及立體幾何內容的命題形式最為多變 . 除保留傳統的“四選一”的選擇題型外,還嘗試開發了“多選填空”、“完型填空”、“構造填空”等題型,并且這種命題形式正在不斷完善和翻新;解答題則設計成幾個小問題,此類考題往往以多面體為依托,第一小問考查線線、線面、面面的位置關系,后面幾問考查空間角、空間距離、面積、體積等度量關系,其解題思路也都是“作――證――求”,強調作圖、證明和計算相結合。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com