日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

 0  433112  433120  433126  433130  433136  433138  433142  433148  433150  433156  433162  433166  433168  433172  433178  433180  433186  433190  433192  433196  433198  433202  433204  433206  433207  433208  433210  433211  433212  433214  433216  433220  433222  433226  433228  433232  433238  433240  433246  433250  433252  433256  433262  433268  433270  433276  433280  433282  433288  433292  433298  433306  447090 

28. 解:(1)∵D(-8,0),∴B點的橫坐標為-8,代入中,得y=-2.

∴B點坐標為(-8,-2).而A、B兩點關于原點對稱,∴A(8,2)

從而k=8×2=16

(2)∵N(0,-n),B是CD的中點,A,B,M,E四點均在雙曲線上,

∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n)

=2mn=2k,mn=k,mn=k.

=k.∴k=4.

由直線及雙曲線,得A(4,1),B(-4,-1)

∴C(-4,-2),M(2,2)

設直線CM的解析式是,由C、M兩點在這條直線上,得

,解得a=b=

∴直線CM的解析式是y=x+.

(3)如圖,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1,M1

設A點的橫坐標為a,則B點的橫坐標為-a.于是,

同理

∴p-q==-2

試題詳情

27. 解:(1)由題意:BP=tcm,AQ=2tcm,則CQ=(4-2t)cm,

∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm

∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=

∴當t為秒時,PQ∥BC

………………2分

(2)過點Q作QD⊥AB于點D,則易證△AQD∽△ABC

∴AQ∶QD=AB∶BC

∴2t∶DQ=5∶3,∴DQ=

∴△APQ的面積:×AP×QD=(5-t)×

∴y與t之間的函數關系式為:y=

………………5分

(3)由題意:

   當面積被平分時有:××3×4,解得:t=

   當周長被平分時:(5-t)+2t=t+(4-2t)+3,解得:t=1

∴不存在這樣t的值

………………8分

(4)過點P作PE⊥BC于E

  易證:△PAE∽△ABC,當PE=QC時,△PQC為等腰三角形,此時△QCP′為菱形

∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=

∵QC=4-2t,∴2×=4-2t,解得:t=

∴當t=時,四邊形PQP′C為菱形

此時,PE=,BE=,∴CE=

………………10分

在Rt△CPE中,根據勾股定理可知:PC=

∴此菱形的邊長為cm   ………………12分

試題詳情

26. 解:方案一:由題意可得:,

到甲村的最短距離為.······································································· (1分)

到乙村的最短距離為

將供水站建在點處時,管道沿鐵路建設的長度之和最小.

即最小值為.········································································ (3分)

方案二:如圖①,作點關于射線的對稱點,則,連接于點,則

,.·········································································· (4分)

中,

,

,兩點重合.即點.············································· (6分)

在線段上任取一點,連接,則

把供水站建在乙村的點處,管道沿線路鋪設的長度之和最小.

即最小值為.··········· (7分)

方案三:作點關于射線的對稱點,連接,則

于點,交于點,交于點,

為點的最短距離,即

中,,,

兩點重合,即點.

中,.············································· (10分)

在線段上任取一點,過于點,連接

顯然

把供水站建在甲村的處,管道沿線路鋪設的長度之和最。

即最小值為.································································ (11分)

綜上,供水站建在處,所需鋪設的管道長度最短.········ (12分)

試題詳情

25. 解:(1)取中點,聯結,

的中點,,.································· (1分)

,.··········································································· (1分)

,得;······································ (2分)(1分)

(2)由已知得.··································································· (1分)

以線段為直徑的圓與以線段為直徑的圓外切,

,即.·························· (2分)

解得,即線段的長為;······································································· (1分)

(3)由已知,以為頂點的三角形與相似,

又易證得.··············································································· (1分)

由此可知,另一對對應角相等有兩種情況:①;②

①當時,,

,易得.得;······················································· (2分)

②當時,,

.又,

,即,得

解得(舍去).即線段的長為2.········································ (2分)

綜上所述,所求線段的長為8或2.

試題詳情

24. 解:(1)∵點上,

,

.

(2)連結, 由題意易知

.

(3)正方形AEFG在繞A點旋轉的過程中,F點的軌跡是以點A為圓心,AF為半徑的圓.

第一種情況:當b>2a時,存在最大值及最小值;

因為的邊,故當F點到BD的距離取得最大、最小值時,取得最大、最小值.

如圖②所示時,

的最大值=

的最小值=

第二種情況:當b=2a時,存在最大值,不存在最小值;

的最大值=.(如果答案為4a2b2也可)

 

試題詳情

23. 解(Ⅰ)當,時,拋物線為,

方程的兩個根為

∴該拋物線與軸公共點的坐標是.  ················································ 2分

(Ⅱ)當時,拋物線為,且與軸有公共點.

對于方程,判別式≥0,有. ········································ 3分

①當時,由方程,解得

此時拋物線為軸只有一個公共點.································· 4分

②當時,

時,

時,

由已知時,該拋物線與軸有且只有一個公共點,考慮其對稱軸為,

應有  即

解得

綜上,.   ················································································ 6分

(Ⅲ)對于二次函數,

由已知時,;時,,

,∴

于是.而,∴,即

.  ············································································································  7分

∵關于的一元二次方程的判別式

,   

∴拋物線軸有兩個公共點,頂點在軸下方.····························· 8分

又該拋物線的對稱軸,

,,

又由已知時,時,,觀察圖象,

可知在范圍內,該拋物線與軸有兩個公共點. ············································ 10分

試題詳情

22. 解:( 1)由已知得:解得

c=3,b=2

∴拋物線的線的解析式為

(2)由頂點坐標公式得頂點坐標為(1,4)

所以對稱軸為x=1,A,E關于x=1對稱,所以E(3,0)

設對稱軸與x軸的交點為F

所以四邊形ABDE的面積=

=

=

=9

(3)相似

如圖,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

試題詳情

21.解:

(1)m=-5,n=-3

  (2)y=x+2

(3)是定值.

因為點D為∠ACB的平分線,所以可設點D到邊AC,BC的距離均為h,

設△ABC AB邊上的高為H,

則利用面積法可得:

(CM+CN)h=MN﹒H

又 H=

化簡可得  (CM+CN)﹒

    

試題詳情

20. 解:(1)如圖,過點B作BD⊥OA于點D.

    在Rt△ABD中,

    ∵∣AB∣=,sin∠OAB=,

    ∴∣BD∣=∣AB∣·sin∠OAB

        =×=3.

又由勾股定理,得

  

     

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵點B在第一象限,∴點B的坐標為(4,3).             ……3分

設經過O(0,0)、C(4,-3)、A(10,0)三點的拋物線的函數表達式為

   y=ax2+bx(a≠0).

∴經過O、C、A三點的拋物線的函數表達式為       ……2分

(2)假設在(1)中的拋物線上存在點P,使以P、O、C、A為頂點的四邊形為梯形

  ①∵點C(4,-3)不是拋物線的頂點,

∴過點C做直線OA的平行線與拋物線交于點P1  .

則直線CP1的函數表達式為y=-3.

對于,令y=-3x=4或x=6.

而點C(4,-3),∴P1(6,-3).

在四邊形P1AOC中,CP1∥OA,顯然∣CP1∣≠∣OA∣.

∴點P1(6,-3)是符合要求的點.                  ……1分

②若AP2∥CO.設直線CO的函數表達式為

  將點C(4,-3)代入,得

∴直線CO的函數表達式為

  于是可設直線AP2的函數表達式為

將點A(10,0)代入,得

∴直線AP2的函數表達式為

,即(x-10)(x+6)=0.

而點A(10,0),∴P2(-6,12).

過點P2作P2E⊥x軸于點E,則∣P2E∣=12.

在Rt△AP2E中,由勾股定理,得

而∣CO∣=∣OB∣=5.

∴在四邊形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴點P2(-6,12)是符合要求的點.                    ……1分

③若OP3∥CA,設直線CA的函數表達式為y=k2x+b2

  將點A(10,0)、C(4,-3)代入,得

∴直線CA的函數表達式為

∴直線OP3的函數表達式為

即x(x-14)=0.

而點O(0,0),∴P3(14,7).

過點P3作P3E⊥x軸于點E,則∣P3E∣=7.

在Rt△OP3E中,由勾股定理,得

而∣CA∣=∣AB∣=.

∴在四邊形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴點P3(14,7)是符合要求的點.                    ……1分

綜上可知,在(1)中的拋物線上存在點P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A為頂點的四邊形為梯形.                 ……1分

(3)由題知,拋物線的開口可能向上,也可能向下.

 ①當拋物線開口向上時,則此拋物線與y軸的副半軸交與點N.

可設拋物線的函數表達式為(a>0).

如圖,過點M作MG⊥x軸于點G.

∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M

     

    

                ……2分

②當拋物線開口向下時,則此拋物線與y軸的正半軸交于點N,

  同理,可得                     ……1分

綜上所知,的值為3:20.                   ……1分

試題詳情

19. 解:(1)在中,令

,

····················································· 1分

的解析式為···················································································· 2分

(2)由,得  ·························································· 4分

,

····································································································· 5分

······························································································· 6分

(3)過點于點

····································································································· 7分

················································································································ 8分

由直線可得:

中,,,則

····························································································· 9分

·························································································· 10分

··································································································· 11分

此拋物線開口向下,時,

當點運動2秒時,的面積達到最大,最大為.   

試題詳情


同步練習冊答案
主站蜘蛛池模板: 每日更新av | 久久艹视频 | 色在线免费视频 | 91久久国产综合久久 | 国产精品久久久久久久 | 日本高清视频在线播放 | 亚洲成人中文字幕 | 波多野结衣一二三区 | 国产精品久久久久影院色老大 | 久久国产综合 | 久久国产视频一区二区 | 国产区视频| 亚洲日韩欧美一区二区在线 | 欧洲亚洲精品久久久久 | 视频一区 国产精品 | 色综合一区 | 欧美大片在线免费观看 | 一区精品视频 | 在线免费色视频 | 婷婷精品久久久久久久久久不卡 | 黄色网址免费在线 | 精品国产一区二区三区久久久久久 | 久久一级 | 精品国产一区av | 高清国产一区二区三区四区五区 | 日韩精品播放 | 在线免费观看羞羞视频 | 欧美在线观看在线观看 | 欧美精品在线一区二区三区 | 伊人网一区| 日韩久久网站 | 久久久国产精品入口麻豆 | 欧美男男videos | 国产福利精品一区二区三区 | 青草草| 亚洲高清在线 | 中文字幕 视频一区 | 秋霞成人| 黄色在线 | 久热精品视频 | 九九资源站 |