(Ⅱ)①令,∵
,∴
,則
。
證明(Ⅰ)令,則
,∵
,∴
。
9、(06安徽20)已知函數(shù)在
上有定義,對任何實數(shù)
和任何實數(shù)
,都有
。(Ⅰ)證明
;(Ⅱ)證明
其中
和
均為常數(shù);(Ⅲ)當(Ⅱ)中的
時,設(shè)
,討論
在
內(nèi)的單調(diào)性并求極值。
8、(06北京)已知函數(shù)在點
處取得極大值5,其導函數(shù)
的圖象經(jīng)過點(1,0),(2,0),如圖所示,求: (Ⅰ)
的值; (Ⅱ)
的值.
為 。
(三)解答題:
7、(05北京)過原點作曲線的切線,則切點的坐標為
,切線的斜率
6、(06湖南)曲線和
在它們的交點處的兩條切線與
軸所圍成的三角形的面積是___________;
A、 B、
C、
D、
(二)填空題:
5、(06安徽)若曲線的一條切線
與直線
垂直,則
的方程為( )
A、 B、
C、
D、
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com