分析 根據(jù)題意,由等比數(shù)列的性質(zhì)可得a3q2=2a3q+3a3,解可得q的值,進(jìn)而分析$\sqrt{{a_m}•{a_n}}=27{a_1}$可得3m-1×3n-1=27×27,化簡(jiǎn)可得m+n=8,進(jìn)而可得$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{8}$(m+n)($\frac{1}{m}+\frac{4}{n}$)=$\frac{1}{8}$(5+$\frac{n}{m}$+$\frac{4m}{n}$),由基本不等式的性質(zhì)計(jì)算可得答案.
解答 解:根據(jù)題意,等比數(shù)列{an}滿足a5=2a4+3a3,即a3q2=2a3q+3a3,
則有q2=2q+3,
解可得q=3或-1,
又由等比數(shù)列{an}各項(xiàng)都為正數(shù),則有q>0,
即q=3,
若$\sqrt{{a_m}•{a_n}}=27{a_1}$,則有am•an=(27a1)2,
變形可得3m-1×3n-1=27×27,
即m+n=8,
$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{8}$(m+n)($\frac{1}{m}+\frac{4}{n}$)=$\frac{1}{8}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{9}{8}$,
即$\frac{1}{m}+\frac{4}{n}$的最小值為$\frac{9}{8}$,
故答案為:$\frac{9}{8}$.
點(diǎn)評(píng) 本題考查基本不等式的性質(zhì)的應(yīng)用,涉及等比數(shù)列的通項(xiàng)公式,關(guān)鍵是求出m+n的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈Z | B. | (2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$),k∈Z | ||
C. | (4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z | D. | (4kπ-$\frac{2π}{3}$,4kπ+$\frac{4π}{3}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -12 | C. | 3 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com