分析 (1)由題意可知:根據等差數列前n項和的性質可知:S7=7a4=7,S15=15a8=75,求得a4=1,a8=5,由d=$\frac{{a}_{8}-{a}_{4}}{8-4}$=1,a4=a1+(4-1)d=1,即可求得a1的值;
(2)由(1)可知:Sn=na1+$\frac{n(n-1)}{2}×d$=$\frac{{n}^{2}}{2}$-$\frac{5n}{2}$,則$\frac{{S}_{n}}{n}$=$\frac{1}{2}$n-$\frac{5}{2}$,當n=1時,$\frac{{S}_{1}}{1}$=-2,數列{$\frac{{S}_{n}}{n}$}是以-2為首項,以$\frac{1}{2}$為公差的等差數列,根據等差數列前n項和公式即可求得Tn.
解答 解:(1)設等差數列的公差為d,
由等差數列的性質可知:S7=7a4=7,S15=15a8=75,
則a4=1,a8=5,
∴d=$\frac{{a}_{8}-{a}_{4}}{8-4}$=1,
由a4=a1+(4-1)d=1,
∴a1=-2,
∴a1為-2,d=1;
(2)由(1)可知:等差數列{an}前n項和Sn,Sn=na1+$\frac{n(n-1)}{2}×d$=$\frac{{n}^{2}}{2}$-$\frac{5n}{2}$,
$\frac{{S}_{n}}{n}$=$\frac{1}{2}$n-$\frac{5}{2}$,
當n=1時,$\frac{{S}_{1}}{1}$=-2,
∴數列{$\frac{{S}_{n}}{n}$}是以-2為首項,以$\frac{1}{2}$為公差的等差數列,
∴Tn=$\frac{(-2+\frac{1}{2}n-\frac{5}{2})n}{2}$=$\frac{1}{4}{n}^{2}-\frac{9}{4}n$,
數列{$\frac{{S}_{n}}{n}$}的前n項和Tn=$\frac{1}{4}{n}^{2}-\frac{9}{4}n$.
點評 本題考查等差數列通項公式及前n項和性質,考查等差前n項和公式,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
贊同 | 反對 | 合計 | |
男 | 50 | 150 | 200 |
女 | 30 | 170 | 200 |
合計 | 80 | 320 | 400 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com