分析 數列{an}滿足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,可得${a}_{n+2}=\frac{1}{1-{a}_{n+1}}$=$\frac{1}{1-\frac{1}{1-{a}_{n}}}$=$\frac{1-{a}_{n}}{-{a}_{n}}$.an+3=$\frac{1}{1-{a}_{n+2}}$=$\frac{1}{1-\frac{1-{a}_{n}}{-{a}_{n}}}$=an.a8=2,可得$2=\frac{1}{1-{a}_{7}}$,解得a7=$\frac{1}{2}$,同理可得:a6,a5,a1=a7,a2=a8,a3=a6.
解答 解:∵數列{an}滿足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,
∴${a}_{n+2}=\frac{1}{1-{a}_{n+1}}$=$\frac{1}{1-\frac{1}{1-{a}_{n}}}$=$\frac{1-{a}_{n}}{-{a}_{n}}$.
∴an+3=$\frac{1}{1-{a}_{n+2}}$=$\frac{1}{1-\frac{1-{a}_{n}}{-{a}_{n}}}$=an.
∴數列{an}是周期為3的數列.
∵a8=2,∴$2=\frac{1}{1-{a}_{7}}$,解得a7=$\frac{1}{2}$,同理可得:a6=-1,a5=2,
a1=a7=$\frac{1}{2}$,a2=a8=2,a3=a6=-1.
S2017=a1+(a2+a3+a4)×672
=$\frac{1}{2}$+$\frac{3}{2}×672$
=$\frac{2017}{2}$.
故答案為:$\frac{1}{2}$,$\frac{2017}{2}$.
點評 本題考查了數列遞推關系、數列的周期性、數列求和,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{x}-\frac{1}{y}>0$ | B. | sinx-siny>0 | C. | ${({\frac{1}{2}})^x}-{({\frac{1}{2}})^y}<0$ | D. | lnx+lny>0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0.4 | B. | 0.6 | C. | 0.8 | D. | 1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com