分析 把t=$\sqrt{9+{x}^{2}}$+$\sqrt{4+{y}^{2}}$+$\sqrt{1+{z}^{2}}$平方,根據柯西不等式放縮,結合已知求的最值.
解答 解:∵x+y+z=1,則t=$\sqrt{9+{x}^{2}}$+$\sqrt{4+{y}^{2}}$+$\sqrt{1+{z}^{2}}$,
∴t2=x2+y2+z2+14+2($\sqrt{({x}^{2}+9)({y}^{2}+4)}$+$\sqrt{({y}^{2}+4)({z}^{2}+1)}$+$\sqrt{({x}^{2}+9)({z}^{2}+1)}$)
≥x2+y2+z2+14+2(xy+6+yz+2+xz+3)
=(x+y+z)2+36
=37,
t≥$\sqrt{37}$(當且僅當$\frac{x}{y}$=$\frac{3}{2}$,$\frac{y}{z}$=2,$\frac{z}{x}$=$\frac{1}{3}$時,等號成立),
故答案為:$\sqrt{37}$.
點評 本題考查了無理數的最值,利用柯西不等式求最值是解題關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | |
售價x(元/千克) | 18 | 15 | 12 | 10 | 9 |
銷售量y(千克) | 50 | 60 | 75 | 90 | 100 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com