分析 (1)設(shè)A(m,n),由題意 $\frac{1}{2}$•OG•AG=3,推出mn=6,由點(diǎn)A在y=$\frac{k}{x}$上,推出k=mn=6.
(2)如圖1中,作AN⊥OD于N,EM⊥OC于M.設(shè)直線CD的解析式為y=k′x+b,A(x1,y1),E(x2,y2).首先證明EM=-k′AN,EM=-k′MC,推出AN=CM,再證明△DAN≌△ECM,即可解決問題.
(3)如圖2中,連接GD,GE.由EA=EC,AD=EC,推出AD=AE=EC,推出S△ADG=S△AGE=S△GEC=3,求出△AOC的面積即可解決問題.
解答 (1)解:設(shè)A(m,n),
∵$\frac{1}{2}$•OG•AG=3,
∴$\frac{1}{2}$•m•n=3,
∴mn=6,
∵點(diǎn)A在y=$\frac{k}{x}$上,
∴k=mn=6.
故答案為6.
(2)證明:如圖1中,作AN⊥OD于N,EM⊥OC于M.設(shè)直線CD的解析式為y=k′x+b,A(x1,y1),E(x2,y2).
則有y1=k′x1+b,y2=k′x2+b,
∴y2-y1=k′(x2-x1),
∴$\frac{6}{{x}_{2}}$-$\frac{6}{{x}_{1}}$=k′(x2-x1),
∴-k′x1x2=6,
∴-k′x1=$\frac{6}{{x}_{2}}$,
∴y2=-k′x1,
∴EM=-k′AN,
∵D(0,b),C(-$\frac{k′}$,0),
∴tan∠DCO=$\frac{OD}{OC}$=-k′=$\frac{EM}{MC}$,
∴EM=-k′MC,
∴AN=CM,
∵AN∥CM,
∴∠DAN=∠ECM,
在△DAN和△ECM中,
$\left\{\begin{array}{l}{∠DAN=∠ECM}\\{AN=CM}\\{∠DNA=∠EMC=90°}\end{array}\right.$,
∴△DAN≌△ECM,
∴AD=EC.
(3)解:如圖2中,連接GD,GE.
∵EA=EC,AD=EC,
∴AD=AE=EC,
∴S△ADG=S△AGE=S△GEC=3,
∵S△AOG=S△ADG=3,
∴S△AOC=3+3+3=9,
∴平行四邊形ABCD的面積=2•S△AOC=18.
點(diǎn)評 本題考查反比例函數(shù)綜合題、一次函數(shù)的應(yīng)用、全等三角形的判定和性質(zhì)、三角形的面積、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù),本題的突破點(diǎn)是證明AN=CM,題目比較難,屬于中考壓軸題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com