分析 (1)由∠BAD+∠ADC=180°.又因為AE、DE平分∠BAD、∠ADC,推出∠DAE+∠ADE=90°,即可推出∠AED=90°,由此即可解決問題.
(2)①只要證明BA=BW,CD=CE即可解決問題.②由tan∠FAG=$\frac{FG}{AF}$,可得$\frac{FG}{AF}$=tan∠DAE=$\frac{DE}{AE}$,求出DE即可解決問題.
解答 (1)證明:在平行四邊形ABCD中,∵AB∥CD,
∴∠BAD+∠ADC=180°.
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE.
(2)解:①在平行四邊形ABCD中,∵AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA,
又∵AE平分∠BAD,即∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5,
同理EC=CD=5,
∴BC=BE+EC=10,
②∵AD=BC=10,AE=8,
在Rt△AED中,DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
又∵AE是∠BAD的角平分線,
∴∠FAG=∠DAE,
∵AD是直徑,
∴∠AFD=90°,
∴tan∠FAG=$\frac{FG}{AF}$,
∴$\frac{FG}{AF}$=tan∠DAE=$\frac{DE}{AE}$=$\frac{6}{8}$=$\frac{3}{4}$.
點評 本題考查圓綜合題、平行四邊形的性質、勾股定理、角平分線的定義等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com