分析 (1)由全等三角形的判定定理SAS證得結(jié)論;
(2)易證四邊形EFGH是平行四邊形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分線,易得∠HEG=∠FEG,根據(jù)等量代換可得∠HEG=∠HGE,從而有HE=HG,易證四邊形EFGH是菱形.
解答 (1)證明:如圖,∵四邊形ABCD是平行四邊形,
∴∠A=∠C,
在△AEH與△CGF中,
$\left\{\begin{array}{l}{AE=CG}\\{∠A=∠C}\\{AH=CF}\end{array}\right.$,
∴△AEH≌△CGF(SAS);
(2)解:∵在ABCD中∠B=∠D,且AB=CD AD=BC
又∵AE=CG AH=CF,
∴BE=DG DH=BF,
∴△DHG≌△BFE,
∴HG=EF
又∵HE=GF
∴四邊形EFGH是平行四邊形
又∵EG平分∠HEF,
∴∠1=∠2
又∵HG∥EF,
∴∠2=∠3,
∴∠1=∠3,
∴HE=HG,
∴EFGH是菱形;
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)、菱形的判定.解題的關(guān)鍵是掌握兩組對(duì)邊相等的四邊形是平行四邊形,一組鄰邊相等的平行四邊形是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com