日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
20.如圖,AC分別切⊙O于D、E,作OQ⊥BC交⊙O于P,連DP、EP交BC于G、F,AF、AG分別交DG、EF于M、N.求證:OQ⊥MN.

分析 連接OD、OE.首先證明∠CEF=∠CFE,推出CF=CE,同理可證BD=BG,由梅涅勞斯定理可知$\frac{AN}{NG}$•$\frac{GF}{CF}$•$\frac{CE}{AE}$=1,$\frac{AM}{MF}$•$\frac{FG}{BG}$•$\frac{BD}{AD}$=1,又因為AD=AE.CE=CF,BD=BG,推出$\frac{AN}{NG}$=$\frac{AM}{NF}$,推出MN∥BC,由OQ⊥BC,即可推出OQ⊥MN.

解答 證明:連接OD、OE.
∵AB、AC是⊙O的切線,
∴OD⊥AB,OE⊥AC,∵OQ⊥BC,
∴∠OEC=∠OQC=90°,
∴∠QOE+∠C=180°,
∴∠QOE=180°-∠C,
∵OE=OP,
∴∠OEP=∠OPE=$\frac{180-∠QOE}{2}$=$\frac{1}{2}$∠C,
∴∠FPQ=∠OPE=$\frac{1}{2}$∠C,
∴∠EFC=90°-∠FPQ=90°-$\frac{1}{2}$∠C,
∴∠CEF=180°-∠EFC-∠C=90°-$\frac{1}{2}$∠C,
∴∠CEF=∠CFE,
∴CF=CE,同理可證BD=BG,
由梅涅勞斯定理可知$\frac{AN}{NG}$•$\frac{GF}{CF}$•$\frac{CE}{AE}$=1,$\frac{AM}{MF}$•$\frac{FG}{BG}$•$\frac{BD}{AD}$=1,
∵AD=AE.CE=CF,BD=BG,
∴$\frac{AN}{NG}$=$\frac{AM}{NF}$,
∴MN∥BC,
∵OQ⊥BC,
∴OQ⊥MN.

點評 本題考查圓綜合題,切線的性質、等腰三角形的判定和性質、梅涅勞斯定理等知識,解題的關鍵是證明CF=CE,BD=BG,本題的突破點是應用由梅涅勞斯定理,推出$\frac{AN}{NG}$=$\frac{AM}{NF}$,推出MN∥BC,屬于競賽題目.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

10.為支持地方,大慶市薩爾圖區、讓胡路區、紅崗區三地現分別有物資100噸、100噸、80噸,需全部運往肇東和肇源兩地,根據需要情況,這批物資運往肇東的數量比運往肇源的數量的2倍少20噸.
(1)求這賑災物資運往肇東和肇源的數量各是多少?
(2)若要求紅崗區運往肇東的物資為60噸,薩爾圖區地運往肇東的物資為x噸(x為整數),讓胡路區運往肇東的物資數量小于薩爾圖區地運往肇東的物資數量的2倍,其余的物資全部運往肇源,且讓胡路區運往肇源的物資數量不超過25噸,則薩爾圖區、讓胡路區兩地的物資運往肇東和肇源的方案有幾種?
(3)已知薩爾圖區、讓胡路區、紅崗區三地的物資運往肇東和肇源的費用如表:
薩爾圖區讓葫蘆區紅崗區
運往肇東的費用(元/噸)220200200
運往肇源的費用(元/噸)250220210
為即時將這批物資運往肇東和肇源,某公司主動承擔運送這批物資的總費用,在(2)問的要求下,該公司承擔運送這批物資的總費用最多是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

11.用圓規、直尺作圖,不寫作法,但要保留作圖痕跡.如圖,已知線段m,n,求作線段AB,使AB=2m+n.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

8.如圖,直線l的解析式為y=-$\frac{4}{3}$x+b,它與坐標軸分別交于A、B兩點,其中B坐標為(0,4).
(1)求出A點的坐標;
(2)若點 P在y軸上,且到直線l的距離為3,試求點P的坐標;( 選做)
(3)在第一象限的角平分線上是否存在點Q使得∠QBA=90°?若存在,求點Q的坐標;若不存在,請說明理由.
(4)動點C從y軸上的點(0,10)出發,以每秒1cm的速度向負半軸運動,求出點C運動所有的時間t,使得△ABC為軸對稱圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

15.如圖,在△ACB中,∠ACB=90°,∠A=45°,沿圖中CD翻折,將△ACD折到△FCD,然后沿CE將△CEB翻折,使CB與CF重合,觀察這個圖形.
(1)寫出其中的兩組全等三角形;
(2)判斷△DFE的形狀;
(3)求∠CDA+∠CEB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.已知△ABC分別以△ABC的AC,BC邊為腰,A,B為直角頂點,作等腰Rt△ACE和等腰Rt△BCD,M為ED的中點,求證:AM⊥BM.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

12.模型建立:
請你拿出草稿紙,裁出含有30°角的一個直角三角形,再按照圖1所示折疊,請你根據折疊的情況,寫出BC與AB的關系:
模型應用:
(1)已知如圖2,在平面直角坐標系中,O是坐標原點,直角三角形ABO,∠ABO=90°,∠BAO=30°,AO=4,求點B的坐標;
(2)臺風是一種自然災害,它以臺風中心為圓心,在周圍數十千米范圍內形成氣旋風暴,有極強的破壞力,如圖3所示,距沿海城市A的正南方向200千米的B處有一臺風中心,其中心風力為12級,每遠離臺風中心20km,風力就會減弱一級,該臺風中心現在正沿北偏東30°方向向C移動,且臺風中心風力不變,若沿海城市所受的風力達到或者超過四級,則稱為受臺風影響.
請問:該城市是否會受到這次臺風的影響?請說明你的理由;若會受臺風影響,該城市受到臺風影響的最大風力是多少級?

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

9.如圖所示,將紙片△ABC沿著DE折疊壓平,則∠A,∠1與∠2之間的數量關系是∠A=$\frac{1}{2}$(∠1+∠2).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

10.已知:如圖,△ABC.
求作:一點P,使P在BC上,且點P到∠BAC的兩邊的距離相等.
(要求尺規作圖,并保留作圖痕跡,不要求寫作法)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 激情超碰| 在线精品亚洲欧美日韩国产 | 综合色成人 | 欧亚视频在线观看 | 超级乱淫片国语对白免费视频 | 91视频三区 | 蜜桃视频日韩 | 日韩欧美一区二区三区免费观看 | 精品专区 | 嫩草午夜少妇在线影视 | 91福利影院在线观看 | 国产精自产拍久久久久久 | 日韩精品久久久久久 | 精品免费在线视频 | 国产精品一区二区久久久久 | 色播99 | 欧洲精品 | www黄| 美女三区 | 久草视 | 午夜视频在线观看网址 | 99视频精品 | 美国av一区二区三区 | 成人免费高清 | 日本一区二区三区在线观看 | 精品视频免费观看 | 91麻豆蜜桃一区二区三区 | 日韩精品一区二区三区在线 | 久久蜜桃av一区二区天堂 | 国产欧美一区二区精品性色 | 91精品中文字幕一区二区三区 | 国产精品久久久久久久久久久新郎 | jjzz日本| 黄色精品视频 | 国产精品自产av一区二区三区 | 亚洲精品成人 | 青草视频在线播放 | 精品福利一区二区 | 国产色婷婷 | 人人精品| 日韩黄视频 |