分析 ①由四邊形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折疊的性質,可求得∠ADG的度數;
②由AE=EF<BE,可得AD>2AE,在用銳角三角函數即可判斷;
③由AG=GF>OG,可得△AGD的面積>△OGD的面積;
④由折疊的性質與平行線的性質,易得△EFG是等腰三角形,即可證得AE=GF;
⑤易證得四邊形AEFG是菱形,由等腰直角三角形的性質,即可得BE=2OG;
⑥根據四邊形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF時等腰直角三角形,由S△OGF=1求出GF的長,進而可得出BE及AE的長,利用正方形的面積公式可得出結論.
解答 解:∵四邊形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折疊的性質可得:∠ADG=$\frac{1}{2}$∠ADO=22.5°,故①正確.
∵由折疊的性質可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<$\frac{1}{2}$AB,
∴$\frac{AD}{AE}$>2,
在Rt△ADE中,tan∠AED=$\frac{AD}{AE}$>2,故②錯誤.
∵∠AOB=90°,
∴AG=FG>OG,△AGD與△OGD同高,
∴S△AGD>S△OGD,故③錯誤.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四邊形AEFG是菱形,故④正確.
∴∠OGF=∠OAB=45°,
∴EF=GF=$\sqrt{2}$OG,
∴BE=$\sqrt{2}$EF=$\sqrt{2}$×$\sqrt{2}$OG=2OG.故⑤正確.
∵四邊形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF時等腰直角三角形.
∵S△OGF=1,
∴$\frac{1}{2}$OG2=1,解得OG=$\sqrt{2}$,
∴BE=2OG=2$\sqrt{2}$,GF=$\sqrt{2+2}$═2,
∴AE=GF=2,
∴AB=BE+AE=2$\sqrt{2}$+2,
∴S正方形ABCD=AB2=(2$\sqrt{2}$+2)2=12+8$\sqrt{2}$,故⑥錯誤.
∴其中正確結論的序號是:①④⑤共三個.
故答案為①④⑤.
點評 此題考查的是四邊形綜合題,涉及到正方形的性質、折疊的性質、等腰直角三角形的性質以及菱形的判定與性質、銳角三角函數等知識.此題綜合性較強,難度較大,注意掌握折疊前后圖形的對應關系,注意數形結合思想的應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 開口向下 | B. | 頂點坐標是(1,2) | ||
C. | 與y軸交點坐標為(0,2) | D. | 與x軸有兩個交點 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com