分析 根據兩平行線間的距離相等得到OB=OD,再由一對直角相等,一對內錯角相等,利用ASA得到三角形AOB與三角形COD全等,利用全等三角形對應邊相等即可求出CD的長.
解答 解:∵AB∥OH∥CD,相鄰兩平行線間的距離相等,
∴OB=OD,
∵OB⊥AB,OD⊥DC,
∴∠ABO=∠CDO=90°,
在△ABO和△CDO中,
$\left\{\begin{array}{l}{∠ABO=∠CDO}\\{OB=OD}\\{∠AOB=∠COD}\end{array}\right.$,
∴△ABO≌△CDO(ASA),
∴CD=AB=20m,
故答案為:20
點評 此題考查了全等三角形的應用,垂直定義,以及平行線間的距離,熟練掌握全等三角形的判定與性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ±$\sqrt{6}$ | B. | 4 | C. | ±$\sqrt{6}$或4 | D. | 4或-$\sqrt{6}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com