分析 (1)利用等量代換求出∠CAB=90°,用三角函數即可求出結論;
(2)先判斷出四邊形AODM為正方形,進而判斷出△CMD≌△HOD,即可求出BH.
解答 解:(1)如圖1,連接BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°,
∵$\widehat{AD}=\widehat{AD}$,
∴∠CEA=∠ABD,
∵∠CAD=∠CEA,
∴∠CAD=∠ABD,
∴∠DAB+∠CAD=90°,
即∠CAB=90°,
∵$AC=2\sqrt{3}$,AB=6,
∴$tan∠ABC=\frac{AC}{AB}=\frac{{2\sqrt{3}}}{6}=\frac{{\sqrt{3}}}{3}$,
∴∠ABC=30°;
(2)
解:如圖2,連接BD,OE,OG,
∵直徑AB=6,
∴$OA=\frac{1}{2}AB=3$,
∵${\widehat{AD}}=\frac{3}{2}$π,
∴∠AOD=90°,
∵∠AOD=∠DMA=∠MAO=90°,OA=OD
∴四邊形AODM為正方形,
∵OE=OG,EG⊥AB,
∴∠EOB=∠GOB,
∴∠EDB=∠GDB,
∵∠ADB=∠FDB=90°,
∴∠ADH=∠FDE=∠CDA,
∵∠ADM=∠ADO=45°,
∴∠CDM=∠HDO,
∵DM=DO,∠CMD=∠HOD=90°,
∴△CMD≌△HOD,
∴OH=CM=1,
∴BH=OB-OH=2.
點評 此題是圓的綜合題,主要考查了等量代換,正方形的判定,全等三角形的判定,解(1)的關鍵是求出∠CAB=90°,解(2)的關鍵是判斷出四邊形AODM為正方形,是一道中等難度的中考常考題.
科目:初中數學 來源: 題型:選擇題
A. | 3$\sqrt{3}$×3$\sqrt{2}$=3$\sqrt{6}$ | B. | $\sqrt{27}$÷$\sqrt{3}$=3 | C. | 2$\sqrt{3}$+4$\sqrt{2}$=6$\sqrt{5}$ | D. | $\sqrt{(-7)^{2}}$=-7 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
格點多邊形各邊上的 格點的個數 | 格點邊多邊形內部的 格點個數 | 格點多邊形的面積 | |
多邊形1 | 4 | 1 | 2 |
多邊形2 | 5 | 2 | ②$\frac{7}{2}$ |
多邊形3 | 6 | 3 | 5 |
多邊形4 | ①5 | 4 | $\frac{11}{2}$ |
一般格點多邊形 | m | n | S |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com