分析 首先過點C作CE⊥AD于點E,由∠ACB=90°,AC=3,BC=4,可求得AB的長,又由直角三角形斜邊上的高等于兩直角邊乘積除以斜邊,即可求得CE的長,由勾股定理求得AE的長,然后由垂徑定理求得AD的長.
解答 解:過點C作CE⊥AD于點E,
則AE=DE,
∵∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴CE=$\frac{AC•BC}{AB}$=$\frac{12}{5}$,
∴AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=$\frac{9}{5}$,
∴AD=2AE=$\frac{18}{5}$,
故答案為$\frac{18}{5}$.
點評 本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | ±$\sqrt{6}$ | B. | 4 | C. | ±$\sqrt{6}$或4 | D. | 4或-$\sqrt{6}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $3\sqrt{2x}$ | B. | $\sqrt{a^3}$ | C. | $\sqrt{8b}$ | D. | $\sqrt{\frac{y}{4}}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com