∴m ≤-87. …………………………………………………………12分
∴,解得a>3. …………………………………………………8分
(3)∵a∈[3,6],∴由(Ⅰ)知∈[1,2],-a≤-3
又x∈[-2,2]
∴f(x)max=max{f(-2),f(2)}
而f(2)-f(-2)=16-4a2<0
∴f(x)max=f(-2)=-8+4a+2a2+m ………………………………………10分
又∵f(x)≤1在[-2,2]上恒成立
∴f(x)max≤1即-8+4a+2a2+m≤1
即m≤9-4a-2a2,在a∈[3,6]上恒成立
∵9-4a-2a2的最小值為-87
當(dāng)-a<x<時(shí),f′(x)<0.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-a),(,+∞),單調(diào)遞減區(qū)間為
(-a,). ……………………………………………………………………4分
(2)由題設(shè)可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上沒(méi)有實(shí)根
22. 解:(1)∵f′(x)=3x2+2ax-a2=3(x-)(x+a),
又a>0,∴當(dāng)x<-a或x>時(shí)f′(x)>0;
(2)解法1:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理得 (1-k2)x2-4kx-6=0. ①
∵直線I與雙曲線C相交于不同的兩點(diǎn)E、F,
∴
∴k∈(-)∪(1,). ② …………………………………8分
設(shè)E(x1,y1),F(x2,y2),則由①式得x1+x2=于是
|EF|=
=
又原點(diǎn)O到直線l的距離d=,
∴SΔOEF=
若SΔOEF=,即解得k=±,滿足②.故滿足條件的直線l有兩條,其方程分別為y=和
……………………………………………………………………………12分
∴a2=2,b2=c2-a2=2.
∴雙曲線C的方程為
解法2:依題意得,雙曲線的半焦距c=2.
2a=|PF1|-|PF2|=
21. 解:(1)解法1:依題意a2+b2=4,得雙曲線方程為(0<a2<4)
將點(diǎn)(3,)代入上式,得.解得a2=18(舍去)或a2=2,
故所求雙曲線方程為 ………………………………………6分
20. 解:(1), ①
當(dāng)時(shí),. ②
由 ① - ②,得.
. …………………………………………………… 3分
又 ,,解得 .
數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(為正整數(shù)). …………………………………6分
(2)由(1)知, . ………… 8分
由題意可知,對(duì)于任意的正整數(shù),恒有,解得 .
數(shù)列單調(diào)遞增, 當(dāng)時(shí),數(shù)列中的最小項(xiàng)為,
必有,即實(shí)數(shù)的最大值為. ………………………………12分
=?BC=?AH?PH?BC=????1.
由=可得d=. ……………………………………………12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com