19. 解:(1)證明:
面PBC⊥面PAC. ……………………………………………………………4分
(2)由(1)知:BC⊥面PAC二面角P―BC―A平面角為∠PCA=.
則AH⊥PC,易知,AH⊥面PBC;
∴BH為AB在面PBC上射影.
∴∠ABH即為AB與面PBC所成的角. …………6分
可求:AH=AC?sin=
故在△AHB中,sin∠ABH= …………8分
(3)設(shè)P到面ABH的距離為d,
則 =d=??AH?BH?d=???d.
18. 解:(1)前2次中恰有一次投中且第3次也投中,
∴………5分
(2)……………………12分
17. 解:(1)f(x)=
…………………………………………………………………4分
∴
……………………………………………………………………6分
(2)由y=f(x)遞增2kπ-(k∈Z) …………………8分
解得:kπ-(k∈Z)
故遞增區(qū)間為:(k-,k+)(k∈Z). ………………………………10分
13. 2 14. 9 15. a<-1或a=0或a>1 16. ①②③
22.設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒(méi)有極值點(diǎn),求a的取值范圍;
(3)若對(duì)任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.
2009年張掖市普通高中高三聯(lián)合考試
文 科 數(shù) 學(xué) 參 考 答 案
一.選擇題(本大題共12小題,每小題5分,共60分. 在每小題給出的四個(gè)選項(xiàng)中只有一項(xiàng)是符合題目要求的).
BACBCD ABBCAB
二.填空題(本大題共四小題,每小題5分,共20分)
21.已知雙曲線C:(a>0,b>0)的兩個(gè)焦點(diǎn)為F1(-2,0)和F2(2,0),點(diǎn)P(3, )在曲線C上.
(1)求雙曲線C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
20.已知數(shù)列的前項(xiàng)和為,,且(為正整數(shù)).
(1)求數(shù)列的通項(xiàng)公式;
(2)記S=,若對(duì)任意正整數(shù),恒成立,求實(shí)數(shù)的最大值.
19. 如圖,AB是⊙O的直徑,PA垂直⊙O所在的平面,C為⊙O上一點(diǎn),H為PC的中點(diǎn),已知AB=2,AC=,二面角
P―BC―A的大小為.
(1)求證:面PBC⊥面PAC;
(2)求AB與面PBC所成的角的正弦;
(3)求點(diǎn)P到平面ABH的距離.
18.在一次籃球練習(xí)課中,規(guī)定每人投籃5次,若投中2次就稱為“通過(guò)” ,若投中3次就稱為“優(yōu)秀”并停止投籃。已知甲每次投籃投中概率是.
(1)求甲恰好投籃3次就“通過(guò)”的概率;
(2)求甲投籃成績(jī)“優(yōu)秀”的概率.
17.已知f(x)=
(1)求f(x)的最小正周期及最大值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com