② .
(2)會利用絕對值的幾何意義求解以下類型的不等式:
① .
22.不等式的基本性質(zhì)和證明的基本方法
(1)理解絕對值的幾何意義,并能利用含絕對值不等式的幾何意義證明以下不等式:
③ 了解條件概率和兩個事件相互獨立的概念,理解次獨立重復(fù)試驗的模型及二項分布,并能解決一些簡單的實際問題.
④ 理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題.
⑤ 利用實際問題的直方圖,了解正態(tài)分布曲線的特點及曲線所表示的意義.
(2)統(tǒng)計案例
了解下列一些常見的統(tǒng)計方法,并能應(yīng)用這些方法解決一些實際問題.
① 獨立性檢驗
了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及其簡單應(yīng)用.
② 假設(shè)檢驗
了解假設(shè)檢驗的基本思想、方法及其簡單應(yīng)用.
③ 回歸分析
了解回歸的基本思想、方法及其簡單應(yīng)用.
21.概率與統(tǒng)計
(1)概率
① 理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現(xiàn)象的重要性.
② 理解超幾何分布及其導(dǎo)出過程,并能進行簡單的應(yīng)用.
20. 計數(shù)原理
(1)分類加法計數(shù)原理、分步乘法計數(shù)原理
① 理解分類加法計數(shù)原理和分步乘法計數(shù)原理.
② 會用分類加法計數(shù)原理或分步乘法計數(shù)原理分析和解決一些簡單的實際問題.
(2)排列與組合
① 理解排列、組合的概念.
② 能利用計數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式.
③ 能解決簡單的實際問題.
(3)二項式定理
① 能用計數(shù)原理證明二項式定理.
② 會用二項式定理解決與二項展開式有關(guān)的簡單問題.
19. 數(shù)系的擴充與復(fù)數(shù)的引入
(1)復(fù)數(shù)的概念
① 理解復(fù)數(shù)的基本概念.
② 理解復(fù)數(shù)相等的充要條件.
③ 了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
(2)復(fù)數(shù)的四則運算
① 會進行復(fù)數(shù)代數(shù)形式的四則運算.
② 了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.
18. 推理與證明
(1)合情推理與演繹推理
① 了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
② 了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理.
③ 了解合情推理和演繹推理之間的聯(lián)系和差異.
(2)直接證明與間接證明
① 了解直接證明的兩種基本方法――分析法和綜合法;了解分析法和綜合法的思考過程、特點.
② 了解間接證明的一種基本方法――反證法;了解反證法的思考過程、特點.
(3)數(shù)學(xué)歸納法
了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.
?法則3:
(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
① 了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次).
② 了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項式函數(shù)一般不超過三次),會求在閉區(qū)間上函數(shù)的最大值、最小值(其中多項式函數(shù)一般不超過三次).
(4)生活中的優(yōu)化問題
會利用導(dǎo)數(shù)解決某些實際問題.
(5)定積分與微積分基本定理
① 了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念.
② 了解微積分基本定理的含義.
?法則2:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com