A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 先畫出滿足條件的平面區域,通過解方程求出B點的坐標,根據z=x-2y變形為y=$\frac{1}{2}$x-$\frac{1}{2}$z,通過圖象顯然,直線過B時,z最大,求出即可.
解答 解:作出滿足條件$\left\{\begin{array}{l}y≤4-x\\ 2x-y+1≥0\\ x-4y-4≤0\end{array}\right.$的平面區域,如圖示:,
由$\left\{\begin{array}{l}{y=4-x}\\{x-4y-4=0}\end{array}\right.$,解得:B(4,0),
由z=x-2y得:y=$\frac{1}{2}$x-$\frac{1}{2}$z,
顯然,直線過B(4,0)時,z最大,
z的最大值是4,
故選:D.
點評 本題考查了簡單的線性規劃問題,考查數形結合思想,是一道基礎題.
科目:高中數學 來源: 題型:選擇題
A. | f(x1)>f(x2) | B. | f(x1)<f(x2) | ||
C. | f(x1)=f(x2) | D. | 無法比較f(x1)與f(x2)的大小 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x+$\frac{1}{x}$ | B. | f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
C. | y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ | D. | y=$\sqrt{x-1}$+$\frac{1}{\sqrt{x-1}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 當x>0且x≠1時,$lgx+\frac{1}{lgx}≥2$ | B. | 當x>0時,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
C. | 當x≥2時,$x+\frac{1}{x}≥2$ | D. | 當0<x≤2時,$x-\frac{1}{x}$無最大值 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{1}{4}$,+∞) | B. | [-$\frac{1}{4}$,+∞) | C. | [-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,0] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-1,3} | B. | {-1,1} | C. | (1,3) | D. | {-1,+∞} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com