日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

15.已知f(x)═ax-$\frac{a}{x}$-51nx,g(x)=x2-mx+4
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)當(dāng)a=2時(shí),若?x1∈(0,1),?x2∈[1,2]都有f(x1)≥g(x2)成立,求實(shí)數(shù)m的取值范圍.

分析 (1)利用x=2是函數(shù)f(x)的極值點(diǎn),求出f′(2)=0,即可求出a的值;
(2)對(duì)g(x)進(jìn)行配方,討論其最值問題,根據(jù)題意?x1∈(0,1),?x2∈[1,2],總有f(x1)≥g(x2)成立,只要要求f(x)max≥g(x)max,即可,從而求出m的范圍.

解答 解:(1)∵f(x)═ax-$\frac{a}{x}$-51nx,
∴f′(x)═a+$\frac{a}{{x}^{2}}$-$\frac{5}{x}$,
∵x=2是函數(shù)f(x)的極值點(diǎn),
∴f′(2)═a+$\frac{a}{4}$-$\frac{5}{2}$=0,
∴a=2,
經(jīng)檢驗(yàn)a=2,x=2是函數(shù)f(x)的極值點(diǎn);
(2)當(dāng)a=2時(shí),f(x)=2x-$\frac{2}{x}$-5lnx,
g(x)=x2-mx+4=$(x-\frac{m}{2})^{2}$+4-$\frac{{m}^{2}}{4}$,
?x1∈(0,1),?x2∈[1,2],總有f(x1)≥g(x2)成立,
∴要求f(x)的最大值大于g(x)的最大值即可,
f′(x)=$\frac{(2x-1)(x-2)}{{x}^{2}}$,令f′(x)=0,
解得x1=$\frac{1}{2}$,x2=2,
當(dāng)0<x<$\frac{1}{2}$,x>2時(shí),f′(x)>0,f(x)為增函數(shù);
當(dāng)$\frac{1}{2}$<x<2時(shí),f′(x)<0,f(x)為減函數(shù).
∵x1∈(0,1),
∴f(x)在x=$\frac{1}{2}$出取得極大值,也是最大值,
∴f(x)max=f($\frac{1}{2}$)=1-4+5ln2=5ln2-3,
∵g(x)=x2-mx+4=$(x-\frac{m}{2})^{2}$+4-$\frac{{m}^{2}}{4}$,
若m≤3,gmax(x)=g(2)=4-2m+4=8-2m,
∴5ln2-3≥8-2m,∴m≥$\frac{11-5ln2}{2}$,
∵$\frac{11-5ln2}{2}$>3,故m不存在;
若m>3時(shí),gmax(x)=g(1)=5-m,
∴5ln2-3≥5-m,∴m≥8-5ln2.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、通過構(gòu)造函數(shù)研究函數(shù)的單調(diào)性解決問題的方法,考查了轉(zhuǎn)化能力、推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若平面向量$\overrightarrow b$與向量$\overrightarrow a=(2,-1)$的夾角是180°,且$|\overrightarrow b|=3\sqrt{5}$,則$\overrightarrow b$=(  )
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.隨意安排甲、乙、丙3人在3天假期中值班,每人值班1天,則:
(1)這3人的值班順序共有多少種不同的排列方法?
(2)這3人的值班順序中,甲在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}為等比數(shù)列,且a1=-1,a4=64.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0且a≠b)的兩個(gè)焦點(diǎn),P為雙曲線右支上異于頂點(diǎn)的任意一點(diǎn),O為坐標(biāo)原點(diǎn).下面四個(gè)命題(  )
A.△PF1F2的內(nèi)切圓的圓心必在直線x=a上
B.△PF1F2的內(nèi)切圓的圓心必在直線x=b上
C.△PF1F2的內(nèi)切圓的圓心必在直線OP上
D.△PF1F2的內(nèi)切圓必通過點(diǎn)(b,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2x-$\sqrt{1-x}$的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a,b∈R,若p:2a<2b,q:a2<b2,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,真命題的個(gè)數(shù)是(  )個(gè).
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x<1}\\{1+\frac{1}{2x},x≥1}\end{array}\right.$在R上單調(diào),則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,2]B.[2,+∞)C.[2,$\frac{7}{2}$]D.[$\frac{7}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲精品乱码久久久久久按摩观 | 五月激情婷婷六月 | 色婷婷香蕉在线一区二区 | 亚洲欧美日本在线 | 国产精品久久久久久久久久久久久久 | 超碰最新在线 | 欧美日韩在线播放 | 蜜桃久久| 久久久国产精品免费 | 在线第一页 | 久久精品视频网 | 成人欧美一区二区三区视频xxx | av片在线播放 | 欧美日韩亚洲国内综合网 | 噜噜噜噜狠狠狠7777视频 | 日韩视频一区二区三区 | 亚洲一区二区三区免费在线观看 | 欧美第一页| 日本中文字幕一区二区有码在线 | 视频精品一区二区 | 中文不卡在线 | 欧美性猛交一区二区三区精品 | 国产一区二区三区四区 | 国产一级视频 | 玖玖操 | 影音先锋国产 | 国产精品无码久久久久 | 91久久人人夜色一区二区 | 日韩欧美一区二区三区 | 青青免费视频 | av在线免费观看网站 | 久久久久精 | 亚洲精品电影网在线观看 | 亚洲精品自在在线观看 | 91激情在线 | 欧美精品一区二区三区一线天视频 | www.狠狠干 | 亚洲a级 | 日韩视频在线一区 | 欧美电影一区 | 在线视频一区二区三区 |