【題目】設函數f(x)=x3+ax2+bx+1的導數滿足
,
,其中常數a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設,求函數g(x)的極值.
【答案】(1)6x+2y-1=0;(2)g(x)在x=0處取得極小值g(0)=-3,在x=3處取得極大值g(3)=15e-3.
【解析】試題分析:(Ⅰ)由已知條件解出a,b,得到函數f(x)的表達式,切線方程的斜率即為該點導數值,由點斜式即可寫出切線方程;
(Ⅱ)求g(x)導函數g′(x)=(-3x2+9x)e-x,可得出單調區間,從而得到極值.
試題解析:(1)∵f(x)=x3+ax2+bx+1,∴f′(x)=3x2+2ax+b,
則解得
∴f(x)=x3-x2-3x+1,∴f(1)=-
,f′(1)=-3,
∴y=f(x)在(1,f(1))處的切線方程為
y-=-3(x-1),即6x+2y-1=0;
(2)由(1)知g(x)=(3x2-3x-3)e-x,
∴g′(x)=(-3x2+9x)e-x,
令g′(x)=0,即(-3x2+9x)e-x=0,得x=0或x=3,
當x∈(-∞,0)時,g′(x)<0,
故g(x)在(-∞,0)上單調遞減.
當x∈(0,3)時,g′(x)>0,故g(x)在(0,3)上單調遞增.
當x∈(3,+∞)時,g′(x)<0,
故g(x)在(3,+∞)上單調遞減.
從而函數g(x)在x=0處取得極小值g(0)=-3,
在x=3處取得極大值g(3)=15e-3.
科目:高中數學 來源: 題型:
【題目】橢圓離心率為
,
,
是橢圓的左、右焦點,以
為圓心,
為半徑的圓和以
為圓心、
為半徑的圓的交點在橢圓
上.
(1)求橢圓的方程;
(2)設橢圓的下頂點為
,直線
與橢圓
交于兩個不同的點
,是否存在實數
使得以
為鄰邊的平行四邊形為菱形?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線關于
軸對稱,頂點在坐標原點
,直線
經過拋物線
的焦點.
(1)求拋物線的標準方程;
(2)若不經過坐標原點的直線
與拋物線
相交于不同的兩點
,
,且滿足
,證明直線
過
軸上一定點
,并求出點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義域為R的偶函數,f(-1)=3,且當x≥0時,f(x)=2x+x+c(c是常數),則不等式f(x-1)<6的解集是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系內從點P1(0,0)作x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q1點處的切線與x軸交于點P2.再從P2作x軸的垂線交曲線于點Q2,依次重復上述過程得到一系列點:P1,Q1;P2,Q2;…;Pn,Qn,記點的坐標為(
,0)(k=1,2,…,n).
(1)試求與
的關系(k=2,…,n);
(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最大值與最小值之和為a2+a+1(a>1).
(1)求a的值;
(2)判斷函數g(x)=f(x)-3在[1,2]的零點的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得如圖柱狀圖:
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發生的概率,記X表示2臺機器三年內共需更換的易損零件數,n表示購買2臺機器的同時購買的易損零件數.
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據,在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com