【題目】如圖,在平面直角坐標系內從點P1(0,0)作x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q1點處的切線與x軸交于點P2.再從P2作x軸的垂線交曲線于點Q2,依次重復上述過程得到一系列點:P1,Q1;P2,Q2;…;Pn,Qn,記點的坐標為(
,0)(k=1,2,…,n).
(1)試求與
的關系(k=2,…,n);
(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
【答案】(1)xk=xk-1-1(k=2,…,n);(2).
【解析】試題分析:(I)設出Pk-1的坐標,求出Qk-1,利用導數的幾何意義函數在切點處的導數值是曲線的曲線的斜率,利用點斜式求出切線方程,令y=0得到xk與xk+1的關系.
(II)求出|PkQk|的表達式,利用等比數列的前n項和公式求出和
試題解析:(1)設點Pk-1的坐標是(xk-1,0),
∵y=ex,∴y′=ex,
∴Qk-1(xk-1,exk-1),在點Qk-1(xk-1,exk-1)處的切線方程是y-exk-1=exk-1(x-xk-1),令y=0,則
xk=xk-1-1(k=2,…,n);
(2)∵x1=0,xk-xk-1=-1,
∴xk=-(k-1),
∴|PkQk|=exk=e-(k-1),
于是有|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|
=1+e-1+e-2+…+e-(n-1)
==
,
即|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|=.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4sinxcos(x+)+1.
(1)求f()的值;
(2)求f(x)的最小正周期;
(3)求f(x)在區間[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+bx+c,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(其中a為常數).
(1)當a=1時,求f(x)在上的值域;
(2)若當x∈[0,1]時,不等式恒成立,求實數a的取值范圍;
(3)設,是否存在正數a,使得對于區間
上的任意三個實數m,n,p,都存在以f(g(m)),f(g(n)),f(g(p))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2+bx+1的導數滿足
,
,其中常數a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設,求函數g(x)的極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣2)ex+a(x﹣1)2有兩個零點.
(1)求a的取值范圍;
(2)設x1 , x2是f(x)的兩個零點,證明:x1+x2<2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com