分析 設出變量,確定不等式組,畫出可行域,找出最優解,利用線性規劃知識求出最值.
解答 解:設工廠應生產A產品xkg,B產品ykg,利潤z萬元,則由題意得
$\left\{\begin{array}{l}{9x+4y≤360}\\{4x+5y≤200}\\{3x+10y≤300}\\{x≥0,y≥0}\end{array}\right.$,
且利潤函數為z=7x+12y,
作出不等式組表示的平面區域如圖所示;
由z=7x+12y,變為y=-$\frac{7}{12}$x+$\frac{z}{12}$,
可知直線l經過M點時,z取得最大值
由$\left\{\begin{array}{l}{3x+10y=300}\\{4x+5y=200}\end{array}\right.$,
可得x=20,y=24,∴M(20,24)
∴zmax=7×20+12×24=428
即工廠生產甲產品20kg,乙產品24kg時,獲得經濟效益最大,為428萬元.
故答案為:428.
點評 本題考查了線性規劃知識的應用問題,也考查了數形結合的解題方法,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (3,4) | B. | R | C. | (-∞,2)∪(2,+∞) | D. | (3,4)∪{2} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3+\sqrt{2}}{8}$ | B. | $\frac{3-\sqrt{2}}{8}$ | C. | $\frac{2\sqrt{6}+1}{6}$ | D. | $\frac{2\sqrt{3}-1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com