日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.設橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的右焦點為F,右頂點為A,已知$\frac{|FA|}{|OF|}+\frac{|FA|}{|OA|}=e$,其中O為原點,e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動直線l過點N(-2,0),l與橢圓E交于P,Q兩點,求△OPQ面積的最大值.

分析 (Ⅰ)由橢圓的性質可知:丨FA丨=a-c,丨OF丨=c,丨OA丨=a,代入$\frac{|FA|}{|OF|}+\frac{|FA|}{|OA|}=e$,求得a2=2c2,由a2-c2=b2=1,即可求得a=$\sqrt{2}$;
(Ⅱ)由題意可知:設l的方程是x=my-2,代入橢圓方程,由△>0求得m的取值范圍,根據韋達定理及三角形的面積公式S=$\frac{1}{2}$丨ON丨•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{2}\sqrt{{m}^{2}-2}}{{m}^{2}+2}$,令t=$\sqrt{{m}^{2}-2}$>0,則S=$\frac{2\sqrt{2}t}{{t}^{2}+4}$=$\frac{2\sqrt{2}}{t+\frac{4}{t}}$≤$\frac{2\sqrt{2}}{2\sqrt{t•\frac{4}{t}}}$=$\frac{\sqrt{2}}{2}$,即可求得m的最大值.

解答 解:(Ⅰ)由橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的右焦點為F,b=1,
由橢圓的幾何性質可知:丨FA丨=a-c,丨OF丨=c,丨OA丨=a,
由$\frac{|FA|}{|OF|}+\frac{|FA|}{|OA|}=e$,整理得(a-c)($\frac{1}{a}+\frac{1}{c}$)=$\frac{c}{a}$,整理得:a2=2c2
由a2-c2=b2=1,解得:c=1,則a=$\sqrt{2}$,
∴a的值$\sqrt{2}$;
(Ⅱ)由(Ⅰ)可知:橢圓的標準方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$,
由題l與x軸不重合,設l的方程是x=my-2,
由$\left\{\begin{array}{l}{x=my-2}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得(my-2)2+2y2-2=0,
即(m2+2)y2-4my+2=0,
∵直線與橢圓有相異交點,
△=16m2-8(m2+2)>0,解得m>$\sqrt{2}$或m<-$\sqrt{2}$,
由韋達定理可知:y1+y2=$\frac{4m}{{m}^{2}+2}$,y1•y2=$\frac{2}{{m}^{2}+2}$,
由△OPQ面積S=$\frac{1}{2}$丨ON丨•丨y1-y2丨=$\frac{1}{2}$丨ON丨•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{2}\sqrt{{m}^{2}-2}}{{m}^{2}+2}$,
令t=$\sqrt{{m}^{2}-2}$>0,
則S=$\frac{2\sqrt{2}t}{{t}^{2}+4}$=$\frac{2\sqrt{2}}{t+\frac{4}{t}}$≤$\frac{2\sqrt{2}}{2\sqrt{t•\frac{4}{t}}}$=$\frac{\sqrt{2}}{2}$.
當且僅當t=2,即m=±$\sqrt{6}$時,△OPQ面積的最大,最大值是$\frac{\sqrt{2}}{2}$.

點評 本題考查橢圓的標準方程及簡單幾何性質,直線與橢圓的位置關系,考查韋達定理,三角形的面積公式及基本不等式的應用,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.為了解城市居民的健康狀況,某調查機構從一社區的120名年輕人,80名中年人,60名老年人中,用分層抽樣方法抽取了一個容量為n的樣本進行調查,其中老年人抽取了6名,則n=(  )
A.26B.24C.20D.18

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知函數f(x)=$\frac{2}{1+{2}^{x}}$+$\frac{1}{1+{4}^{x}}$滿足條件f(loga($\sqrt{2}$+1))=1,其中a>1,則f(loga($\sqrt{2}$-1))=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.拋物線y=x2-2x-3與坐標軸的交點在同一個圓上,則交點確定的圓的方程為(  )
A.x2+(y-1)2=2B.(x-1)2+(y-1)2=4C.(x-1)2+y2=4D.(x-1)2+(y+1)2=5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知定義在R上的可導函數f(x)滿足f′(x)+f(x)<0,設a=f(m-m2),b=e${\;}^{{m}^{2}-m+1}$•f(1),則a,b的大小關系是(  )
A.a>bB.a<b
C.a=bD.a,b的大小與m的值有關

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.若數列{an}的通項公式是an=$\left\{\begin{array}{l}{{2}^{n+1}(1≤n≤2)}\\{\frac{1}{{3}^{n}}(n≥3)}\end{array}\right.$,前n項和為Sn,則$\underset{lim}{n→∞}$Sn的值為12$\frac{1}{18}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的離心率的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數y=loga(x-2)的圖象經過一個定點,該定點的坐標為(3,0).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.設x>0,y>0,且x+y=18,則xy的最大值為81.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费av电影在线观看 | 精品视频一区二区在线观看 | 国产成人在线视频 | 欧美精品久 | 亚洲欧美一区二区三区在线 | 外国一级a毛片 | 国产精品久久久久久亚洲调教 | 涩涩涩涩涩 | 欧美福利一区二区 | 日韩三区在线观看 | 日韩在线| 九草av| 黄色小视频网 | 亚洲综合国产 | 国产中文字幕一区二区三区 | 高清国产一区二区三区四区五区 | 亚洲91精品 | 亚洲午夜精品视频 | 久久99精品久久久久 | 免费av一区二区三区 | 日韩亚洲视频 | 在线免费av观看 | 天天操天天拍 | 国产一区二区三区在线免费观看 | 欧美日韩在线免费观看 | 午夜免费福利在线 | 久久综合一区二区 | 中文字幕乱码亚洲精品一区 | 精品少妇一区二区 | 亚洲一区免费看 | 91视频在线免费观看 | 亚洲精品国品乱码久久久久 | 黄色在线 | 蜜桃视频在线播放 | 久久精品毛片 | 黄色高清视频 | 日韩日韩 | 成人在线视频网址 | 99久久婷婷国产精品综合 | 国产欧美日韩综合精品 | 直接看av的网站 |