分析 根據題意,將xy(x+3y)=x-2y變形可得yx2+(3y2-1)x+2y=0,原問題可以轉化為方程yx2+(3y2-1)x+2y=0有正數根的問題,結合二次函數的性質可得$\left\{\begin{array}{l}{△=(3{y}^{2}-1)^{2}-8{y}^{2}≥0}\\{-\frac{3{y}^{2}-1}{2y}>0}\end{array}\right.$,解可得y的取值范圍,即可得答案.
解答 解:根據題意,由xy(x+3y)=x-2y,變形可得yx2+(3y2-1)x+2y=0,
而x、y都是正實數,
則方程yx2+(3y2-1)x+2y=0有正數根,
又由$\frac{c}{a}$=2>0,則方程yx2+(3y2-1)x+2y=0的兩根同號,
則有$\left\{\begin{array}{l}{△=(3{y}^{2}-1)^{2}-8{y}^{2}≥0}\\{-\frac{3{y}^{2}-1}{2y}>0}\end{array}\right.$,
解可得y2≤$\frac{7-2\sqrt{10}}{6}$,
即0<y≤$\frac{\sqrt{5}-\sqrt{2}}{3}$,
即y的最大值為$\frac{\sqrt{5}-\sqrt{2}}{3}$.
點評 本題考查不等式的應用,關鍵是將不等式轉化為方程有正數解的問題.
科目:高中數學 來源: 題型:選擇題
A. | i≤504 | B. | i≤2009 | C. | i≤2013 | D. | i<2013 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{7}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{{10\sqrt{3}}}{3}$ | C. | $\frac{10}{3}$ | D. | $\frac{{5\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2019 | C. | -2019 | D. | 2018×2019 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com