日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
17.已知函數f(x)=lnx-kx+k.
(Ⅰ)若f(x)≥0有唯一解,求實數k的值;
(Ⅱ)證明:當a≤1時,x(f(x)+kx-k)<ex-ax2-1.
(附:ln2≈0.69,ln3≈1.10,${e^{\frac{3}{2}}}≈4.48$,e2≈7.39)

分析 解法一:(Ⅰ)要使f(x)≥0有唯一解,只需滿足f(x)max=0,且f(x)max=0的解唯一,分①當k≤0,②當k>0 討論求解;
(Ⅱ)要證當a≤1時,x(f(x)+kx-k)<ex-ax2-1,即證當a≤1時,ex-ax2-xlnx-1>0,即證ex-x2-xlnx-1>0.由(Ⅰ)得xlnx≤x(x-1),故只需證ex-2x2+x-1>0,當x>0時成立;
解法二:(Ⅰ)分①當k≤0時,②當k>0時兩種情況求解,
(Ⅱ)要證明當a≤1時,x(f(x)+kx-k)<ex-ax2-1,即證當a≤1時,ex-ax2-xlnx-1>0,(因為ax2≤x2),即證ex-x2-xlnx-1>0

解答 解法一:(Ⅰ)函數f(x)的定義域為(0,+∞).
要使f(x)≥0有唯一解,只需滿足f(x)max=0,且f(x)max=0的解唯一,(1分)$f'(x)=\frac{1-kx}{x}$,(2分)
①當k≤0時,f'(x)≥0,f(x)在(0,+∞)上單調遞增,且f(1)=0,
所以f(x)≥0的解集為[1,+∞),不符合題意; (4分)
②當k>0時,且$x∈(0,\frac{1}{k}]$時,f'(x)≥0,f(x)單調遞增;當$x∈(\frac{1}{k},+∞)$時,f'(x)<0,f(x)單調遞減,所以f(x)有唯一的一個最大值為$f(\frac{1}{k})$,
令$f(\frac{1}{k})=k-lnk-1=0$,得k=1,此時f(x)有唯一的一個最大值為f(1),且f(1)=0,故f(x)≥0的解集是{1},符合題意;
綜上,可得k=1.(6分)
(Ⅱ)要證當a≤1時,x(f(x)+kx-k)<ex-ax2-1,
即證當a≤1時,ex-ax2-xlnx-1>0,
即證ex-x2-xlnx-1>0.(7分)
由(Ⅰ)得,當k=1時,f(x)≤0,即lnx≤x-1,從而xlnx≤x(x-1),
故只需證ex-2x2+x-1>0,當x>0時成立; (8分)
令h(x)=ex-2x2+x-1(x≥0),則h'(x)=ex-4x+1,(9分)
令F(x)=h'(x),則F'(x)=ex-4,令F'(x)=0,得x=2ln2.
因為F'(x)單調遞增,所以當x∈(0,2ln2]時,F'(x)≤0,F(x)單調遞減,即h'(x)單調遞減,當x∈(2ln2,+∞)時,F'(x)>0,F(x)單調遞增,即h'(x)單調遞增,
所以h'(ln4)=5-8ln2<0,h'(0)=2>0,h'(2)=e2-8+1>0,
由零點存在定理,可知?x1∈(0,2ln2),?x2∈(2ln2,2),使得h'(x1)=h'(x2)=0,
故當0<x<x1或x>x2時,h'(x)>0,h(x)單調遞增;當x1<x<x2時,h'(x)<0,h(x)單調遞減,所以h(x)的最小值是h(0)=0或h(x2).
由h'(x2)=0,得${e^{x_2}}=4{x_2}-1$,h(x2)=${e^{x_2}}-2{x_2}^2+{x_2}-1=-2{x_2}^2+5{x_2}-2=-({{x_2}-2})({2{x_2}-1})$,
因為x2∈(2ln2,2),所以h(x2)>0,
故當x>0時,h(x)>0,所以原不等式成立.(12分)
解法二:(Ⅰ)函數f(x)的定義域為(0,+∞).$f'(x)=\frac{1-kx}{x}$,(1分)
①當k≤0時,f'(x)≥0,f(x)在(0,+∞)上單調遞增,且f(1)=0,所以f(x)≥0的解為[1,+∞),此時不符合題意; (2分)
②當k>0時,$f'(x)=\frac{1-kx}{x}=-\frac{k}{x}(x-\frac{1}{k})$,
所以當$x∈(0,\frac{1}{k}]$時,f'(x)≥0,f(x)單調遞增;當$x∈(\frac{1}{k},+∞)$時,f'(x)<0,f(x)單調遞減,所以$f(x)≤f(\frac{1}{k})$,$f(\frac{1}{k})=k-lnk-1$,(3分)
令g(k)=k-lnk-1,$g'(k)=1-\frac{1}{k}=\frac{k-1}{k}$,(4分)
當k∈(0,1]時,g'(k)≤0,g(k)單調遞減,當k∈(1,+∞)時,g'(k)>0,g(k)單調遞增,所以g(k)≥g(1)=0,由此可得當k>0且k≠1時,$f(\frac{1}{k})>0$,
且當x→0+,x→+∞時,f(x)→-∞,由零點存在定理,$?{x_1}∈(0,\frac{1}{k}),{x_2}∈(\frac{1}{k},+∞)$,
使得f(x1)=f(x2)=0,當x1≤x≤x2時,f(x)≥0,解集不唯一,不符合題意;
當k=1時,f(x)≤f(1)=0,所以f(x)≥0的解集是{1},符合題意;
綜上可得,當k=1時,f(x)≥0有唯一解; (6分)
(Ⅱ)要證明當a≤1時,x(f(x)+kx-k)<ex-ax2-1,
即證當a≤1時,ex-ax2-xlnx-1>0,(因為ax2≤x2
即證ex-x2-xlnx-1>0,(7分)
令F(x)=ex-x2-xlnx-1(x>0),則F'(x)=ex-2x-lnx-1,(8分)
令G(x)=F'(x),則$G'(x)={e^x}-2-\frac{1}{x}$在(0,+∞)上單調遞增,且G'(1)<0,G'(2)>0,
所以?x0∈(1,2)使得G'(x0)=0,即${e^{x_0}}=2+\frac{1}{x_0}$,
所以當x>x0時,G'(x)>0,G(x)單調遞增,即F'(x)遞增;
當0<x<x0時,G'(x)<0,G(x)單調遞減,即F'(x)遞減,
所以$F'{({x_0})_{min}}={e^{x_0}}-2{x_0}-ln{x_0}-1=\frac{1}{x_0}-2{x_0}-ln{x_0}+1$,$H(x)=\frac{1}{x}-2x-lnx+1$,
當x∈(1,2)時遞減,F'(x0min<H(1)=0,
當x→0時,F'(x)→+∞,$F'(\frac{3}{2})={e^{\frac{3}{2}}}-3-ln\frac{3}{2}-1>0$,
由零點存在定理,可得?x1∈(0,x0),${x_2}∈({x_0},\frac{3}{2})$,F'(x1)=F'(x2)=0,
故當0<x<x1或x>x2時,F'(x)>0,F(x)單調遞增,
當x1<x<x2時,F'(x)<0,F(x)單調遞減,
當x→0+時,F(x)→0,由F'(x2)=0得,${e^{x_2}}=2{x_2}+ln{x_2}+1$,$1<{x_0}<{x_2}<\frac{3}{2}$,
又F(x2)=${e^{x_2}}-{x_2}^2-{x_2}ln{x_2}-1=-{x_2}^2+2{x_2}+ln{x_2}-{x_2}ln{x_2}$,
令M(x)=-x2+2x+lnx-xlnx($1<x<\frac{3}{2}$),
則$M'(x)=-2x+2+\frac{1}{x}-lnx-1$在$(1,\frac{3}{2})$遞減,且M'(1)=0,所以M'(x)<0,
所以M(x)在$(1,\frac{3}{2})$遞減,$M(\frac{3}{2})=-\frac{9}{4}+3+ln\frac{3}{2}-\frac{3}{2}ln\frac{3}{2}=0.75-\frac{1}{2}(ln3-ln2)>0$,
所以當$1<x<\frac{3}{2}$,M(x)>0,即F(x2)>0,
所以F(x)>0,即原不等式成立.(12分)

點評 本題考查了利用導數處理函數的單調性、最值問題,考查了分類討論思想、轉化思想、轉化思想,考查了運算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.在△ABC中,$AB=2,AC=4,∠BAC=\frac{2π}{3}$,AD為BC邊上的中線,則AD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=x2+ax-lnx(a∈R,a為常數)
(1)當a=-1時,若方程f(x)=$\frac{b}{x}$有實根,求b的最小值;
(2)設F(x)=f(x)•e-x,若F(x)在區間(0,1]上是單調函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.在平面直角坐標系中,以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的參數方程為$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數,α∈[0,π]),直線l的極坐標方程為$ρ=\frac{4}{{\sqrt{2}sin({θ-\frac{π}{4}})}}$.
(1)寫出曲線C的普通方程和直線l的直角坐標方程;
(2)P為曲線C上任意一點,Q為直線l任意一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.公差為2的等差數列{an}的前n項和為Sn.若S3=12,則a3=(  )
A.4B.6C.8D.14

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.《九章算術》是我國古代內容極為豐富的數學名著,系統地總結了戰國、秦、漢時期的數學成就.書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(單位:cm),則該陽馬的外接球的表面積為(  )
A.100π cm2B.$\frac{500π}{3}$ cm2C.400π cm2D.$\frac{4000π}{3}$ cm2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.若函數f(x)=2sinωx(0<ω<1)在區間$[{0,\frac{π}{3}}]$上的最大值為1,則ω=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的參數方程為$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數).
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)若曲線C向左平移一個單位,再經過伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=y}\end{array}}\right.$得到曲線C',設M(x,y)為曲線C'上任一點,求$\frac{x^2}{4}-\sqrt{3}xy-{y^2}$的最小值,并求相應點M的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據以上數據建立一個2×2的列聯表;
(2)試判斷能否有97.5%的把握認為“休閑方式與性別有關”
參考公式:1.獨立性檢驗臨界值
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
2.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({c+d})}}$( 其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 免费av在线网站 | 国产污视频在线 | 国产成人在线看 | 成人在线观看一区 | 干中文字幕 | 黄色的网站免费看 | 国产精品视频免费观看 | 国产精品一任线免费观看 | 久久久国产一区 | 精品www | 娇妻被朋友调教成玩物 | 男女啪网站 | 成人av教育| 欧美日本亚洲 | 黄色毛片在线观看 | 欧美激情小视频 | 国产精品黄网站在线观看 | 久久精品免费观看 | 99视频网站| 超碰人人爱| 久久久久性视频 | 秋霞a级毛片在线看 | 99这里只有精品 | 亚洲视频一区在线播放 | 久久久久久久久久久久99 | 久9久9| 另类一区| 97久久久国产精品 | 91天堂| 精品日韩欧美一区二区三区在线播放 | 国产精品综合一区二区 | 欧美人人 | 国产精品视频一区二区三区四蜜臂 | 国产网址 | 国产精品一区二区吃奶在线观看 | 亚洲成人久久久 | 欧美久久免费观看 | 日韩高清一区二区 | 亚洲视频在线观看一区二区三区 | 五月婷婷色 | 国产视频久久久久久久 |