A. | y=e | B. | y=x-e+$\frac{1}{e}$ | C. | y=x | D. | y=$\frac{1}{e}$ |
分析 求出函數f(x)的導數,可得x=e處切線的斜率和切點,由點斜式方程可得切線的方程.
解答 解:f(x)=$\frac{lnx}{x}$的導數為f′(x)=$\frac{1-lnx}{{x}^{2}}$,x>0,
f(x)=$\frac{lnx}{x}$在x=e處的切線斜率為f′(x)=$\frac{1-lne}{{e}^{2}}$=0,
又f(e)=$\frac{1}{e}$,
則曲線f(x)=$\frac{lnx}{x}$在x=e處的切線方程為y-$\frac{1}{e}$=0(x-e),
即為y=$\frac{1}{e}$.
故選:D.
點評 本題考查導數的運用:求切線的方程,考查導數的幾何意義,正確求導和運用點斜式方程是解題的關鍵,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,5) | B. | (-0.5,0.2) | C. | (-2,1) | D. | (-0.5,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,5) | B. | (-∞,5] | C. | (5,+∞) | D. | [5,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-1,0] | B. | (-1,0) | C. | (-∞,0]∪[1,+∞) | D. | (-∞,-1)∪(0,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com