分析 利用函數(shù)的奇偶性求函數(shù)g(x)的解析式,再利用g(x)得單調(diào)性解對數(shù)不等式,求得x的范圍.
解答 解:函數(shù)y=f(x)是定義在[-4,4]上的偶函數(shù),
且f(x)=$\left\{\begin{array}{l}{{3}^{x}-9,0≤x≤4}\\{g(x),-4≤x<0}\end{array}\right.$,則g(x)=3-x-9,故g(x)的零點為-2.
由不等式(1-2x)g(log2x)<0,可得$\left\{\begin{array}{l}{1-2x<0}\\{g(_{log2}x)>0}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{1-2x>0}\\{g{(log}_{2}x)<0}\end{array}\right.$②.
由①可得$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{{-4≤log}_{2}x<-2}\end{array}\right.$,∴x∈∅.
由②可得$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{{-2<log}_{2}x≤0}\end{array}\right.$,∴$\frac{1}{4}$<x<$\frac{1}{2}$,
故答案為:($\frac{1}{4}$,$\frac{1}{2}$).
點評 本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,解對數(shù)不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2016}{2017}$ | B. | $\frac{2017}{2016}$ | C. | $\frac{2015}{2017}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com