分析 由正切函數的性質判斷①;求出函數的定義域判斷②;舉例說明③錯誤;利用配方法求出函數最值說明④正確.
解答 解:①y=tanx在其定義域內不是增函數,但有無數多個單調增區間,故①錯誤;
②由x+$\frac{π}{4}≠\frac{π}{2}+kπ$,得x$≠\frac{π}{4}+kπ,k∈Z$,
∴函數y=tan(x+$\frac{π}{4}$)的定義域是{x|x≠$\frac{π}{4}+kπ$,k∈Z},故②正確;
③若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow$,則必有$\overrightarrow=\overrightarrow{c}$,錯誤,如$\overrightarrow{a}=\overrightarrow{0}$,$\overrightarrow、\overrightarrow{c}$可以是任意兩個向量;
④函數y=cos2x+sinx=-sin2x+sinx+1=$-(sinx-\frac{1}{2})^{2}+\frac{5}{4}$,
∵-1≤sinx≤1,∴當sinx=-1時,函數y=cos2x+sinx的最小值為-1,故④正確.
故答案為:②④.
點評 本題考查命題的真假判斷與應用,考查了函數的性質,訓練了利用配方法求函數的最值,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
實驗順序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
零件數 x(個) | 10 | 20 | 30 | 40 | 50 |
加工時間y(分鐘) | 62 | 66 | 75 | 84 | 88 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 164石 | B. | 178石 | C. | 189石 | D. | 196石 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com