日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.如圖,在△ABC中,D是邊BC上一點,$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

分析 (1)利用向量加法的三角形法則得出;
(2)由條件$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0可得$\overrightarrow{AB}•\overrightarrow{AD}$=0,結(jié)合(1)的結(jié)論得出$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AD}$,兩邊平方即可計算AC,再用余弦定理求出BC.

解答 解:(1)∵$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
∴$\overrightarrow{DC}$=$\frac{1}{2}$$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{AD}-\overrightarrow{AB}$),
∴$\overrightarrow{AC}$=$\overrightarrow{AD}+\overrightarrow{DC}$=$\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$.
(2)∵$\overrightarrow{AB}•\overrightarrow{BD}$+${\overrightarrow{AB}}^{2}$=$\overrightarrow{AB}•$($\overrightarrow{BD}+\overrightarrow{AB}$)=$\overrightarrow{AB}•\overrightarrow{AD}$=0,
∴$\overrightarrow{AD}•\overrightarrow{AC}$=$\overrightarrow{AD}$•($\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$)=$\frac{3}{2}$${\overrightarrow{AD}}^{2}$=$\frac{3}{2}$.
(3)∵$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$,
∴$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
∴${\overrightarrow{AD}}^{2}$=$\frac{1}{9}{\overrightarrow{AB}}^{2}$+$\frac{4}{9}{\overrightarrow{AC}}^{2}$+$\frac{4}{9}$$\overrightarrow{AB}•\overrightarrow{AC}$,
∵AB=3,AD=1,cos∠BAC=-$\frac{1}{3}$,
∴${\overrightarrow{AD}}^{2}$=1,${\overrightarrow{AB}}^{2}$=9,$\overrightarrow{AB}•\overrightarrow{AC}$=-AC,
∴1=1+$\frac{4}{9}$AC2-$\frac{4}{9}$AC,
解得AC=1.
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•AC•cosBAC=9+1-2×1×3×(-$\frac{1}{3}$)=12.
∴|$\overrightarrow{BC}$|=2$\sqrt{3}$.

點評 本題考查了平面向量的線性運算,數(shù)量積運算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.下圖網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.12+$\frac{81}{2}$πB.12+81πC.24+$\frac{81}{2}$πD.24+81π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.將6個人排成三排,每排各2人則有多少種排法?若甲不在第一排,乙在第二排則有多種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項公式;
(2)設${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓(x+a)2+y2=1與圓x2+y2=16沒有公共點,則正數(shù)a的取值范圍為(0,3)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,圓O:x2+y2=a2與y軸正半軸交于點B,過點B的直線與橢圓E相切,且與圓O交于另一點A,若∠AOB=60°,則橢圓E的離心率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在等比數(shù)列{an}中,公比為q,Sn為其前n項和.已知q=3,S4=80,則a1的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當0<x≤1時,f(x)=2x,則f(2017)+f(2016)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,底面ABC為等腰直角三角形,AB⊥AC,AB=AC=2,AA1=3,M是側(cè)棱CC1上一點.
(1)若BM⊥A1C,求$\frac{{{C_1}M}}{MC}$的值;
(2)若MC=2,求直線BA1與平面ABM所成角的正弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久午夜精品影院一区 | 免费在线播放av | 国产成人精品久久 | 久草在线在线精品观看 | 羞羞午夜 | 日韩三区视频 | 91资源在线| 久久99精品国产麻豆不卡 | 在线欧美成人 | 国产91精选| 色综合久久久久 | 国产精品99精品久久免费 | 免费视频色 | 免费精品视频 | 久久99久久精品 | 日韩精品亚洲一区 | 中文字幕一区二区三区四区不卡 | 日韩黄色在线 | 美女一级a毛片免费观看97 | 国产 日韩 欧美 在线 | 嫩草成人影院 | 丁香久久| 免费成人在线电影 | 四虎影视网址 | 日韩一区中文字幕 | 国产中文字幕一区二区三区 | 欧美激情在线观看 | 亚洲精品国产精品乱码不99按摩 | 国产美女在线精品免费观看网址 | av免费网站 | 精品一二三区视频 | 日韩精品欧美在线 | 精品久久久久一区二区国产 | 在线观看免费毛片视频 | 中文字幕高清在线 | 国产成人精品免高潮在线观看 | 久久国产99| 国产精品美女久久 | 超碰超碰在线观看 | 一区二区三区亚洲视频 | 久久精品这里热有精品 |