日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.已知函數f(x)的定義域為(-∞,0)∪(0,+∞),滿足條件:①f(2)=1,②f(xy)=f(x)+f(y),③當x>1時,f(x)>0.
(1)求證:函數f(x)是偶函數;       
(2)討論函數f(x)的單調性;
(3)求不等式f(x)+f(x+3)≤2的解集.

分析 (1)由條件先得到f(1)=0,再得到f(-1)=0,根據f(-x)=f(-1•x)=f(-1)+f(x)=f(x),可得f(x)是偶函數.
(2)任意取x2>x1>0,可得f($\frac{{x}_{2}}{{x}_{1}}$)>0,由$f({x_2})=f({x_1}•\frac{x_2}{x_1})=f({x_1})+f(\frac{x_2}{x_1})$,可得f(x2)>f(x1),可得f(x)在(0,+∞)上是增函數,再利用函數為偶函數,得出結論.
(3)原不等式可轉化為f(x(x-3))≤f(4),可得|x(x-3)|≤4,解得x的范圍.

解答 解:(1)證明:函數f(x)的定義域為(-∞,0)∪(0,+∞),
滿足條件:①f(2)=1,②f(xy)=f(x)+f(y),
由f(2)=f(1×2)=f(1)+f(2),得f(1)=0.
由f(1)=f([-1]×[-1])=2f(-1)=0,得f(-1)=0.
∴f(-x)=f(-1•x)=f(-1)+f(x)=f(x),∴f(x)是偶函數.
(2)根據當x>1時,f(x)>0,任意取x2>x1>0,則$\frac{{x}_{2}}{{x}_{1}}$>1,∴f($\frac{{x}_{2}}{{x}_{1}}$)>0,
∴$f({x_2})=f({x_1}•\frac{x_2}{x_1})=f({x_1})+f(\frac{x_2}{x_1})$,∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函數.
又f(x)是偶函數,∴f(x)在(-∞,0)上是減函數,在(0,+∞)上是增函數.
(3)由f(x•y)=f(x)+f(y),得f(x)+f(x-3)=f(x(x-3)).
又f(4)=f(2×2)=2f(2)=2,∴原不等式可轉化為f(x(x-3))≤f(4).
∵f(x)是偶函數,∴|x(x-3)|≤4,解得:-1≤x≤4,且x≠0,
∴不等式f(x)+f(x-3)≤2的解集是[-1,0)∪(0,4].

點評 本題主要考查抽象函數的應用,函數的奇偶性、單調性的判斷和應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.已知函數y=x2-4x+6.
①當x∈R時,畫出函數圖象,根據圖象寫出函數的增區間、減區間;
②當x∈[1,4]時,求出函數的最大值、最小值;
③當x∈(t,4],y∈[2,6]時,試確定t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.不等式組$\left\{\begin{array}{l}{x^2}-x-2>0①\\ 2{x^2}+(5+2a)x+5a<0②\end{array}\right.$解集中的整數有且只有一個,則a的范圍(  )
A.[-2,2]B.[-3,2)C.[-3,2)∪(3,4]D.(3,4]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知全集U={1,2,3,4},集合A={1,2},B={2,3},則(∁UA)∪B={2,3,4}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.解一元二次方程ax2+bx+c=0(a≠0)利用求根公式解的集合為{$\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$}或{-$\frac{b}{2a}$}或∅.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.動點P(x,y)滿足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥0}\\{x+y-3≥0}\end{array}\right.$,則z=x+2y的最小值為3.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.在等比數列{an}中,若an>0,a8=$\sqrt{2}$,則a5+a11有最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若函數f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定義域上恰有三個零點,則實數a的取值范圍是(  )
A.0<a<$\frac{16}{3}$B.a<$\frac{16}{3}$C.a<0或a>$\frac{16}{3}$D.a≤$\frac{16}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知函數f(x)=Asin(2ωx+φ)(ω>0),若f(x+$\frac{π}{6}$)是周期為π的偶函數,則φ的一個可能值是(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.πD.$\frac{7π}{6}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕在线永久 | 久久高清 | 国产高清精品一区二区三区 | 99久久婷婷国产综合精品 | a级毛片观看 | 精品专区 | 日日摸天天爽天天爽视频 | 91视频大全| 午夜私人影院 | 极品少妇一区二区三区精品视频 | 欧美精品99 | 中文字幕亚洲不卡 | 波多野结衣一区二区三区四区 | 欧美区在线 | 理论片一区 | 国产乱肥老妇国产一区二 | 国产在线小视频 | 四虎国产成人永久精品免费 | 国产精品亚洲一区二区三区 | 日韩无在线 | 亚洲精选免费视频 | 欧美一区免费 | 亚洲婷婷网 | 国产精品久久久久久福利一牛影视 | 久草在线在线精品观看 | 久久欧美精品一区 | 日本不卡精品 | 精品福利在线观看 | 中文成人无字幕乱码精品 | 我和我的祖国电影在线观看免费版高清 | 天天天综合网 | 久久精品成人 | 国产电影一区二区三区图片 | 国产一区二区精品在线观看 | 久久e久久 | 精品久久久久久久人人人人传媒 | 国内精品一区二区 | 国变精品美女久久久久av爽 | 国产九色视频 | 中文字幕日韩高清 | 精品在线免费视频 |