分析 構造基本不等式的性質即可求解.利用“乘1法”與基本不等式的性質即可得出.
解答 解:正實數a,b,即a>0,b>0;
∵a+3b=7,
∴a+1+3(b+2)=14
則$\frac{a+1}{14}+\frac{3(b+2)}{14}=1$,
那么:($\frac{1}{1+a}$+$\frac{4}{2+b}$ )($\frac{a+1}{14}+\frac{3(b+2)}{14}$)=$\frac{1}{14}+\frac{12}{14}+(\frac{4(a+1)}{14(2+b)}+\frac{3(b+2)}{14(a+1)})$
≥$\frac{13}{14}+2×\frac{\sqrt{12}}{14}$=$\frac{13+4\sqrt{3}}{14}$
當且僅當2(a+1)=$\sqrt{3}$(b+2)時,即取等號.
∴$\frac{1}{1+a}$+$\frac{4}{2+b}$ 的最小值為:$\frac{13+4\sqrt{3}}{14}$,
故答案為:$\frac{13+4\sqrt{3}}{14}$.
點評 本題考查了構造不等式的思想,利用“乘1法”與基本不等式的性質,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | a≤4 | B. | a≤5 | C. | a≤2$\sqrt{2}$ | D. | a≤1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com