分析 (1)求出函數的導數,通過討論a的范圍,求出函數的單調區間即可;
(2)求出函數的導數,通過討論x的范圍,求出f(x)的最小值,得到關于b的不等式,解出即可.
解答 解:(1)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
當a>1時,lna>0,當x∈(0,+∞)時,2x>0,ax>1,∴ax-1>0,
所以f'(x)>0,故函數f(x)在(0,+∞)上單調遞增;
當0<a<1時,lna<0,當x∈(0,+∞)時,2x>0,ax<1,∴ax-1<0,
所以f'(x)>0,故函數f(x)在(0,+∞)上單調遞增,
綜上,f(x)在(0,+∞)上單調遞增,
(2)f'(x)=axlna+2x-lna=2x+(ax-1)lna,
①當x>0時,由a>1,可知ax-1>0,lna>0,∴f'(x)>0;
②當x<0時,由a>1,可知ax-1<0,lna>0,∴f'(x)<0;
③當x=0時,f'(x)=0,∴f(x)在[-1,0]上遞減,在[0,1]上遞增,
∴當x∈[-1,1]時,f(x)min=f(0)=1-b,
若存在x0∈[-1,1],使得f(x0)≤e-1,
即f(x)min≤e-1即可,故1-b≤e-1,
解得:b≥2-e.
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x2+4)′=2x+4 | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (cosx)′=-sinx | D. | ${({\frac{1}{x}})^′}=-\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3 | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4×4=16 | B. | 9×4=36 | C. | 4×4×4=64 | D. | 9×4+7=43 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com