日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦點F,過F斜率為1的直線交橢圓于M,N兩點,MN的垂直平分線交x軸于點P.若$\frac{|MN|}{|PF|}$=4,則橢圓C的離心率為$\frac{1}{2}$.

分析 設直線l的方程,代入橢圓方程,由韋達定理,弦長公式及中點坐標公式,求得中點坐標Q坐標,求得MN垂直平分線方程,當y=0時,即可求得P點坐標,代入即可求得丨PF丨,即可求得$\frac{|MN|}{|PF|}$,即可求得a和c的關系,即可求得橢圓的離心率.

解答 解:設直線l的方程為:y=(x-c)(k≠0),M(x1,y1),N(x2,y2),
線段MN的中點Q(x0,y0).
聯立$\left\{\begin{array}{l}{y=x-c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,化為(a2+b2)x2-2a2cx+a2c2-a2b2=0,
∴x1+x2=$\frac{2{a}^{2}c}{{a}^{2}+{b}^{2}}$,x1x2=$\frac{{a}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.
∴|MN|=$\sqrt{1+{1}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4a{b}^{2}}{{a}^{2}+{b}^{2}}$,x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{{a}^{2}c}{{a}^{2}+{b}^{2}}$.
∴y0=x0-c=-$\frac{{b}^{2}c}{{a}^{2}+{b}^{2}}$,
∴MN的垂直平分線為:y+$\frac{{b}^{2}c}{{a}^{2}+{b}^{2}}$=-(x-$\frac{{a}^{2}c}{{a}^{2}+{b}^{2}}$),
令y=0,解得xP=$\frac{{c}^{3}}{{a}^{2}+{b}^{2}}$,
∴P($\frac{{c}^{3}}{{a}^{2}+{b}^{2}}$,0).
∴|PF|=c-xP=$\frac{{2b}^{2}c}{{a}^{2}+{b}^{2}}$,
∴$\frac{|MN|}{|PF|}$=$\frac{2a}{c}$=4,
則$\frac{c}{a}$=$\frac{1}{2}$,
∴橢圓C的離心率$\frac{1}{2}$,
當k=0時,$\frac{|MN|}{|PF|}$=,也成立,
∴橢圓C的離心率$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查簡單幾何性質,考查直線與橢圓的位置關系,考查直線的垂直平分線的求法,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.已知數列{an}滿足a1+a2+a3+…+an-1+an=n-an(n∈N*).
(1)求證:數列{an-1}是等比數列;
(2)若n(1-an)≤t(n∈N*)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知動圓過定點P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心C的軌跡方程;
(2)過點(2,0)的直線l與C相交于A,B兩點.求證:$\overrightarrow{OA}•\overrightarrow{OB}$是一個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知曲線y=xn在點(1,0)處的切線與直線2x-y+1=0平行,則實數n=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.一個簡單幾何體的三視圖如圖所示,其正視圖和俯視圖均為正三角形,側視圖為腰長是2的等腰直角三角形則該幾何體的體積為(  )
A.$\frac{4}{9}$$\sqrt{3}$B.1C.$\frac{8}{9}$$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦點和短軸頂點構成面積為4的正方形.
(I)求橢圓的標準方程;
(II)過焦點F1,F2作互相平行的兩條直線,與橢圓分別交于點P,Q,R,S,求四邊形PQRS的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.$|{\frac{1-2i}{2+i}}|$=(  )
A.1B.$\sqrt{2}$C.-iD.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.復數z滿足z(1+i)=4,則復數z在復平面上對應的點與點(1,0)間的距離為(  )
A.2B.$\sqrt{5}$C.4D.$\sqrt{13}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲啊v| 黄色小说在线免费观看 | 久久av资源 | 男男成人高潮片免费网站 | 福利影院在线观看 | 久久av片 | 波多野吉衣一二三区乱码 | 天天操狠狠干 | 五月婷婷影院 | 亚洲专区一区 | 午夜免费小视频 | 国产成人久久精品麻豆二区 | 中文字幕网址在线 | www.久久久 | 国产一区二区免费在线观看 | 99久久婷婷国产综合精品草原 | 欧美在线视频一区 | 国语av | 欧美色图在线视频 | 黑森林av | 亚洲人精品| 久久爱综合 | 国产一区在线观看视频 | 日本久久视频 | 男人的天堂亚洲 | 午夜私人影院 | 精品国产三级 | 久久久中文字幕 | 国产一级特黄 | 中国农村毛片免费播放 | 六月丁香综合 | 免费网站av | 亚洲影院在线观看 | 视频一区二区在线 | 黄色成人在线观看 | 免费性视频 | 国产99页 | 成人免费高清 | 91日韩欧美 | 成人精品三级av在线看 | 91精品久久久久 |