分析 利用整體思想利用區間與區間的子集關系求出ω的范圍,進一步利用代入法進行驗證求出結果.
解答 解:函數f(x)=sin(ωx+$\frac{π}{4}}$)(ω>0),
由$\frac{π}{2}$+2kπ≤ωx+$\frac{π}{4}}$≤2kπ+$\frac{3π}{2}$,k∈Z,
取k=0,得:$\frac{π}{4ω}$≤x≤$\frac{5π}{4ω}$,
∵f(x)在(${\frac{π}{2}$,π)上單調遞減,
∴$\frac{π}{4ω}$≤$\frac{π}{2}$<x<π≤$\frac{5π}{4ω}$,k∈Z.
解不等式組得到:$\frac{1}{2}$≤ω≤$\frac{5}{4}$,
∵f(${\frac{π}{6}}$)=f(${\frac{π}{3}}$),
∴函數f(x)的一個中心的橫坐標是:x=$\frac{\frac{π}{6}+\frac{π}{3}}{2}$=$\frac{π}{4}$,
令$\frac{π}{4}}$ω+$\frac{π}{4}}$=kπ,k∈Z,則ω=4k+1.k∈Z.
又∵$\frac{1}{2}$≤ω≤$\frac{5}{4}$,
∴ω=1.
故答案是:1.
點評 本題考查的知識要點:三角函數關系式的恒等變換,正弦型函數單調性的應用,帶入驗證法的應用,屬于基礎題型.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-1)∪(3,+∞) | B. | (-∞,-1)∪[3,+∞) | C. | (-2,1] | D. | (-2,-1]∪[3,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,0) | C. | $({\frac{1}{3},1})$ | D. | (2.+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 必要但不充分條件 | B. | 充分但不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com