分析 求出m的值,根據復合函數同增異減的原則求出函數g(x)的遞增區間即可.
解答 解:∵$\int_0^1{({x^2}+m)dx$=1,
∴($\frac{1}{3}$x3+mx)${|}_{0}^{1}$=1,解得:m=$\frac{2}{3}$,
故f(x)=logm(3+2x-x2)=${log}_{\frac{2}{3}}$(3+2x-x2),
令g(x)=-x2+2x+3=-(x-3)(x+1),
令g(x)>0,解得:-1<x<3,
而g(x)在對稱軸x=1,
故g(x)在(-1,1)遞增,
故f(x)在(-1,1)遞減,
故答案為:(-1,1).
點評 本題考查了定積分的運算,考查復合函數的單調性異減二次函數的性質,對數函數的性質,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 979 | B. | 557 | C. | 467 | D. | 978 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,2] | B. | [0,1] | C. | [1,2] | D. | [-1,0] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com