A. | (-$\frac{1}{2}$,+∞) | B. | ($\frac{-3+\sqrt{3}}{2}$,+∞) | C. | ($\frac{-3+\sqrt{3}}{2}$,$\frac{1}{2}$) | D. | (0,+∞) |
分析 求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可.
解答 解:函數f(x)的定義域是(-$\frac{1}{2}$,0)∪(0,+∞),
f′(x)=$\frac{2}{2x+1}$+$\frac{3}{{x}^{2}}$=$\frac{{2x}^{2}+6x+3}{{x}^{2}(2x+1)}$,
令f′(x)>0,即2x2+6x+3>0,
解得:x>$\frac{-3+\sqrt{3}}{2}$或x<$\frac{-3-\sqrt{3}}{2}$(舍),
結合函數的單調性求出函數在(0,+∞)遞增,
故選:D.
點評 本題考查了函數的單調性問題,考查導數的應用,是一道基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數學成績 | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
物理成績 | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ① | B. | ②③ | C. | ①④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com