日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.如圖,四棱柱ABCD-A1B1C1D1的底面AB是CD菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(1)證明:BD⊥平面A1CO;
(2)若∠BAD=60°,求直線A1C與平面AA1D1D所成角的正弦值.

分析 (1)推導出A1O⊥BD,CO⊥BD,由此能證明BD⊥平面A1CO.
(2)以OA,OB,OA1分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出直線A1C與平面AA1D1D所成角的正弦值.

解答 證明:(1)∵A1O⊥底面ABCD,BD?平面ABCD,
∴A1O⊥BD.
∵ABCD是菱形,∴CO⊥BD.
又A1O∩CO=O,∴BD⊥平面A1CO.
解:(2)由(1)知OA,OB,OA1兩兩垂直,
則以OA,OB,OA1分別為x,y,z軸,建立如圖所示的空間直角坐標系.
∵∠BAD=60°,AB=AA1=2,∴OB=OD=1,AO=$\sqrt{3}$,OA1=1,
則A($\sqrt{3},0,0$),D(0,-1,0),C(-$\sqrt{3}$,0,0),A1(0,0,1),
$\overrightarrow{AD}$=(-$\sqrt{3}$,-1,0),$\overrightarrow{A{A}_{1}}$=(-$\sqrt{3},0,1$),$\overrightarrow{{A}_{1}C}$=(-$\sqrt{3},0,-1$),
設平面AA1D1D的一個法向量為$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=-\sqrt{3}x-y=0}\\{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=-\sqrt{3}x+z=0}\end{array}\right.$,得y=-z=-$\sqrt{3}$x,
令x=1,得y=-$\sqrt{3}$,z=$\sqrt{3}$,∴$\overrightarrow{n}$=(1,-$\sqrt{3},\sqrt{3}$),
∵cos<$\overrightarrow{n},\overrightarrow{{A}_{1}C}$>=$\frac{\overrightarrow{n}•\overrightarrow{{A}_{1}C}}{|\overrightarrow{n}|•|\overrightarrow{{A}_{1}C}|}$=$\frac{-2\sqrt{3}}{2×\sqrt{7}}$=-$\frac{\sqrt{21}}{7}$,
∴直線A1C與平面AA1D1D所成角的正弦值$\frac{\sqrt{21}}{7}$.

點評 本題考查線面垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow$=(3,-$\sqrt{3}$),若$\overrightarrow{a}$⊥$\overrightarrow$,則|${\overrightarrow a}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知函數f(x)為奇函數,且x>0時f(x)=2x-2,則不等式f(x+1)<0的解集為( 。
A.{x|x<0或1<x<2}B.{x|-2<x<-1或x>0}C.{x|x<-2或-1<x<0}D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知角α的終邊經過點(3a,-4a)(a<0),則sinα-cosα等于(  )
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已函數f(x)=|2x+a|的增區間是[3,+∞),則實數a的取值是(  )
A.-6B.-5C.-4D.-3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1},
(1)若a=$\frac{7}{2}$,求M∪N; (∁RM)∩N;
(2)若M?N,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.某小區的綠化地,有一個三角形的花圃區,若該三角形的三個頂點分別用A,B,C表示,其對邊分別為a,b,c且滿足(2b-c)cosA-acosC=0,則在A處望B、C所成的角的大小為60°.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,已知底面ABCD是菱形且∠BAD=60°,側棱PA=PD,O為AD邊的中點,M為線段PC上的定點.
(1)求證:平面PAD⊥平面POB;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,且直線PA∥平面MOB,求三棱錐P-MOB的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.設$\sqrt{3}$b是1-a和1+a的等比中項(a>0,b>0),則a+$\sqrt{3}$b的最大值為$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本少妇毛茸茸高清 | 久久精品性视频 | 国产亚洲一区二区三区在线观看 | 国产精品99久久免费观看 | 成年入口无限观看网站 | 日本在线免费观看 | 久久人人爽人人爽人人片av不 | 国产美女高潮一区二区三区 | 天天操天天摸天天干 | 国产精品美女久久久久久久网站 | 91精品专区 | 久草在线视频网 | 国产欧美日韩一区二区三区 | 偷拍电影一区二区三区 | 国产亚洲精品综合一区91555 | 亚洲成人免费观看 | 久草在线高清 | 日韩啊v | 91精品久久久久久久久入口 | a国产在线观看 | 欧美精品一区二区三区一线天视频 | 欧美精品一区二区三区在线四季 | 亚洲成人精品一区二区三区 | 国产高清在线精品一区二区三区 | 国产精品一区二区在线观看免费 | 久色| 黄色在线免费观看视频 | 欧美在线视频一区 | 在线日本看片免费人成视久网 | 国产极品美女高潮无套av个 | 六月丁香啪啪 | 伊人午夜 | 在线观看三级视频 | 国产视频一区二区在线观看 | 欧美99| 亚欧色视频 | 成人免费视频毛片 | 在线不卡日韩 | av在线免费观看网站 | 激情婷婷丁香 | 亚洲精品中文字幕乱码无线 |