A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 把已知等式變形,利用復數代數形式的乘除運算化簡,再求出$\overline{z}$的坐標得答案.
解答 解:由z-zi=1+2i,得z=$\frac{1+2i}{1-i}=\frac{(1+2i)(1+i)}{(1-i)(1+i)}=\frac{-1+3i}{2}=-\frac{1}{2}+\frac{3}{2}i$,
∴$\overline{z}=-\frac{1}{2}-\frac{3}{2}i$,
則$\overline z$所對應的點的坐標($-\frac{1}{2}$,-$\frac{3}{2}$),位于復平面內的第三象限.
故選:C.
點評 本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 27種 | B. | 36種 | C. | 54種 | D. | 81種 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若p為真,則¬(¬p)也為真 | |
B. | 若“p∧q為真”,則“p∨q為真”為真命題 | |
C. | ?x∈R,使得tanx=2017 | |
D. | “2x>$\frac{1}{2}$”是“log${\;}_{\frac{1}{2}}$x<0”的充分不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | log23 | C. | 3 | D. | -log25 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com