分析 首先連接CD,BD,由∠BAC的平分線與BC的垂直平分線相交于點D,DE⊥AB,DF⊥AC,根據角平分線的性質與線段垂直平分線的性質,易得CD=BD,DF=DE,繼而可得AF=AE,易證得Rt△CDF≌Rt△BDE,則可得BE=CF,繼而求得答案.
解答 解:如圖,連接CD,BD,
∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分線,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
$\left\{\begin{array}{l}{CD=BD}\\{DF=DE}\end{array}\right.$,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=22,AC=10,
∴BE=6.
故答案為:6.
點評 此題考查了線段垂直平分線的性質、角平分線的性質以及全等三角形的判定與性質.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想的應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com