分析 (1)首先證明∠ACD=∠A,再求出∠ADC=120°,再根據(jù)∠ADE=∠ADC-∠EDF計算即可得解;
(2)只要證明△DPM和△DCN相似,再根據(jù)相似三角形對應(yīng)邊成比例即可證明.
解答 解:(1)∵∠ACB=90°,點D為AB的中點,
∴CD=AD=BD=$\frac{1}{2}$AB,
∴∠ACD=∠A=30°,
∴∠ADC=180°-30°×2=120°,
∴∠ADE=∠ADC-∠EDF=120°-90°=30°;
(2)∵∠EDF=90°,
∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,
∴∠PDM=∠CDN,
∵∠B=60°,BD=CD,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∵∠CPD=∠A+∠ADE=30°+30°=60°,
∴∠CPD=∠BCD,
在△DPM和△DCN中,
$\left\{\begin{array}{l}{∠PDM=∠CDN}\\{∠CPD=∠BCD}\end{array}\right.$,
∴△DPM∽△DCN,
∴$\frac{PM}{CN}$=$\frac{PD}{CD}$.
點評 本題考查了旋轉(zhuǎn)的性質(zhì),相似三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),解題的關(guān)鍵是正確尋找相似三角形,利用相似三角形的性質(zhì)解決問題,屬于中考?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 40° | C. | 36° | D. | 45° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
每月用水量 | 單價 |
不超過5m3 | 3元/m3 |
超過5m3不超過10m3的部分 | 5元/m3 |
超過10m3的部分 | 8元/m3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -10 | B. | 10 | C. | -8 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com