分析 如圖,作AF⊥OB于F,QE⊥IB于E.設OP=x.根據S△APQ=S△AOB-S△AOP-S△PQB,根據二次函數利用二次函數的性質解決問題即可.
解答 解:如圖,作AF⊥OB于F,QE⊥IB于E.設OP=x.
∵A(1,$\sqrt{3}$),B(2,0),
∴OF=1,AF=$\sqrt{3}$,OB=2,
∵OF=FB,AF⊥OB,
∴AO=AB,
在Rt△OAF中,∵∠AFO=90°,OF=1,AF=$\sqrt{3}$,
∴OA=AB=$\sqrt{O{F}^{2}+A{F}^{2}}$=2,
∵OA=OB=AB=2,
∴△AOB是等邊三角形,
∴∠BOA=∠BAO=∠ABO=60°
∵PQ∥OA,
∴∠QPB=∠AOB=60°,
∴△PQB是等邊三角形,
∴QP=PB=QB=2-x,
∴S△PQB=$\frac{\sqrt{3}}{4}$(2-x)2,
∴S△APQ=S△AOB-S△AOP-S△PQB=$\frac{\sqrt{3}}{4}$×22-$\frac{1}{2}$•x•$\sqrt{3}$-$\frac{\sqrt{3}}{4}$(2-x)2=-$\frac{\sqrt{3}}{4}$(x-1)2+$\frac{\sqrt{3}}{4}$,
∵-$\frac{\sqrt{3}}{4}$<0,
∴當x=1時,△APQ的面積最大值為$\frac{\sqrt{3}}{4}$.
故答案為$\frac{\sqrt{3}}{4}$.
點評 本題考查相似三角形的點評和性質、等邊三角形的判定和性質、二次函數的應用等知識,解題的關鍵是學會構建二次函數解決最值問題,屬于中考常考題型.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2b | B. | -2b | C. | a+2c | D. | 2c-2a |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com