A. | 2 | B. | 3 | C. | 1 | D. | 6 |
分析 先證明△ABD≌△CAE,推出∠ABD=∠CAE,求出∠BPF=∠APD=60°,得出∠PBF=30°,根據含30度角的直角三角形性質求出即可.
解答 解:∵在△ABC中,∠C=60°,AB=BC,
∴△ABC是等邊三角形,
∴AB=AC.
∴∠BAC=∠C.
在△ABD和△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠C}\\{AD=CE}\end{array}\right.$,
∴△ABD≌△CAE(SAS).
∴∠ABD=∠CAE.
∴∠APD=∠ABP+∠PAB=∠BAC=60°.
∴∠BPF=∠APD=60°.
∵∠BFP=90°,∠BPF=60°,
∴∠PBF=30°.
∴PF=$\frac{1}{2}$PB=3.
故選:B.
點評 本題考查了等邊三角形性質,全等三角形的性質和判定,三角形外角性質,含30度角的直角三角形性質的應用,關鍵是求出∠PBF=30°.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{18}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com