分析 (1)根據(jù)題意即可得到結(jié)論;
(2)當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等列方程得到t=2,于是得到當(dāng)t=2時(shí),P、Q相遇,即可得到結(jié)論;
(3)由t秒后,點(diǎn)P表示的數(shù)-2+3t,點(diǎn)Q表示的數(shù)為8-2t,于是得到PQ=|(-2+3t)-(8-2t)|=|5t-10|,列方程即可得到結(jié)論;
(4)由點(diǎn)M表示的數(shù)為 $\frac{-2+(-2+3t)}{2}$=$\frac{3t}{2}$-2,點(diǎn)N表示的數(shù)為 $\frac{8+(-2+3t)}{2}$=$\frac{3t}{2}$+3,即可得到結(jié)論.
解答 解:(1)①10,3;
②-2+3t,8-2t;
(2)∵當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等
∴-2+3t=8-2t,
解得:t=2,
∴當(dāng)t=2時(shí),P、Q相遇,
此時(shí),-2+3t=-2+3×2=4,
∴相遇點(diǎn)表示的數(shù)為4;
(3)∵t秒后,點(diǎn)P表示的數(shù)-2+3t,點(diǎn)Q表示的數(shù)為8-2t,
∴PQ=|(-2+3t)-(8-2t)|=|5t-10|,
又PQ=$\frac{1}{2}$AB=$\frac{1}{2}$×10=5,
∴|5t-10|=5,
解得:t=1或3,
∴當(dāng):t=1或3時(shí),PQ=$\frac{1}{2}$AB;
(4)∵點(diǎn)M表示的數(shù)為 $\frac{-2+(-2+3t)}{2}$=$\frac{3t}{2}$-2,
點(diǎn)N表示的數(shù)為 $\frac{8+(-2+3t)}{2}$=$\frac{3t}{2}$+3,
∴MN=|($\frac{3t}{2}$-2)-($\frac{3t}{2}$+3)|=|$\frac{3t}{2}$-2-$\frac{3t}{2}$-3|=5.
點(diǎn)評(píng) 本題考查了一元一次方程的應(yīng)用應(yīng)用和數(shù)軸,解題的關(guān)鍵是掌握點(diǎn)的移動(dòng)與點(diǎn)所表示的數(shù)之間的關(guān)系,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②均用代入法 | B. | ①②均用加減法 | ||
C. | ①用代入法,②用加減法 | D. | ①用加減法,②用代入法 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com