分析 將方程變形為(x-y)2+(x-2)2+(y-2)2=2,根據整數解的定義分三個代數式x-y,x-2,y-2中兩個絕對值為1,一個為0,可得方程組$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解方程組求得x,y的值.
解答 解:2x2-2xy+2y2-4x-4y+6=0,
(x-y)2+(x-2)2+(y-2)2=2,
∵求方程的整數解,
∴$\left\{\begin{array}{l}{x-y=-1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=-1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=-1}\\{y-2=0}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=-1}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=1}\\{y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=1}\\{x-2=0}\\{y-2=1}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=-1}\\{y-2=1}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=-1}\end{array}\right.$,無解;
$\left\{\begin{array}{l}{x-y=0}\\{x-2=1}\\{y-2=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
故方程2x2-2xy+2y2-4x-4y+6=0的整數解為$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
點評 本題考查了非一次不定方程(組)中方程整數解的求法:把方程進行變形,使方程左邊分解為含未知數的3個式子,右邊為常數,然后利用整數的整除性求解.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com