分析 (1)首先求得點A的坐標,然后利用待定系數法確定直線的解析式,從而求得直線與拋物線的交點坐標;
(2)如圖1,過點B作BG∥x軸,過點A作AG∥y軸,交點為G,然后分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;
解答 解:(1)∵點A是直線與拋物線的交點,且橫坐標為-2,
∴y=$\frac{1}{4}$×(-2)2=1,A點的坐標為(-2,1),
設直線的函數關系式為y=kx+b,
將(0,4),(-2,1)代入得$\left\{\begin{array}{l}{b=4}\\{-2k+b=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=\frac{3}{2}}\\{b=4}\end{array}\right.$,
∴直線y=$\frac{3}{2}$x+4,
由$\left\{\begin{array}{l}{y=\frac{3}{2}x+4}\\{y=\frac{1}{4}{x}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=8}\\{y=16}\end{array}\right.$
∴點B的坐標為(8,16);
(2)如圖,連接AC,BC,
∵由A(-2,1),B(8,16)可求得AB2=325.
設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m-8)2+162=m2-16m+320,
①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,
解得:m=-$\frac{1}{2}$;
②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,
解得:m=0或m=6;
③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,
解得:m=32;
∴點C的坐標為(-$\frac{1}{2}$,0),(0,0),(6,0),(32,0).
點評 本題是二次函數的綜合題型.一次函數的應用、待定系數法、兩點間距離公式、勾股定理等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com