日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

16.已知:在△ABC中,∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.
(1)如圖1,若AE、CD為△ABC的角平分線.
①求證:∠AFC=120°;
②若AD=6,CE=4,求AC的長?
(2)如圖2,若∠FAC=∠FCA=30°,求證:AD=CE.

分析 (1)①由題意∠BAC+∠BCA=120°,根據(jù)∠AFC=180-∠FAC-∠FCA=180-$\frac{1}{2}(∠BAC+∠BCA)$=120°,即可解決問題.②在AC上截取AG=AD=6,連接FG.只要證明△ADF≌△AGF(SAS),推出∠AFD=∠AFG=60°,∠GFC=∠CFE=60°,再證明△CGF≌△CEF(ASA),推出CG=CE=4,由此即可解決問題.
(2)在AE上截取FH=FD,連接CH.只要證明△ADF≌△CHF(SAS),再證明CH=CE,即可解決問題.

解答 解:(1)①∵AE、CD分別為△ABC的角平分線
∴∠FAC=$\frac{1}{2}∠BAC$,∠FCA=$\frac{1}{2}∠BCA$,
∵∠B=60°
∴∠BAC+∠BCA=120°,
∴∠AFC=180-∠FAC-∠FCA=180-$\frac{1}{2}(∠BAC+∠BCA)$=120°.

②在AC上截取AG=AD=6,連接FG.

∵AE、CD分別為△ABC的角平分線
∴∠FAC=∠FAD,∠FCA=∠FCE,
∵∠AFC=120°,
∴∠AFD=∠CFE=60°,
在△ADF和△AGF中
$\left\{\begin{array}{l}AD=AG\\∠DAF=∠GAF\\ AF=AF\end{array}\right.$,
∴△ADF≌△AGF(SAS)
∴∠AFD=∠AFG=60°,
∴∠GFC=∠CFE=60°,
在△CGF和△CEF中
$\left\{\begin{array}{l}∠GFC=∠EFC\\ CF=CF\\∠GCF=∠ECF\end{array}\right.$,
∴△CGF≌△CEF(ASA),
∴CG=CE=4,
∴AC=10.

(2)在AE上截取FH=FD,連接CH.

∵∠FAC=∠FCA=30°
∴FA=FC,
在△ADF和△CHF中
∵$\left\{\begin{array}{l}AF=CF\\∠AFD=∠CFH\\ DF=HF\end{array}\right.$,
∴△ADF≌△CHF(SAS),
∴AD=CH,∠DAF=∠HCF,
∵∠CEH=∠B+∠DAF=60°+∠DAF
∠CHE=∠HAC+∠HCA=60°+∠HCF
∴∠CEH=∠CHE,
∴CH=CE,
∴AD=CE.

點評 本題考查三角形綜合題、等腰三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線構(gòu)造全等三角形解決問題,屬于中考壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.計算:22-[(-3)×(-$\frac{4}{3}$)-(-2)3].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.為改善生態(tài)環(huán)境,防止水土流失,2017年植樹節(jié)前期某村計劃在荒坡上種1200棵樹,由于青年志愿者的支援,每天比原計劃多種20%,結(jié)果提前5天完成任務(wù),請問原計劃每天種多少棵樹?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC中,AB=AC,在△EFC中,EF=FC,且∠BAC+∠EFC=180°,D是BE中點.求證:AD⊥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,已知AB=a2,BC=4a,AC=b2-4,且a,b都是大于3的奇數(shù),則a與b的大小關(guān)系是(  )
A.a>bB.a<bC.a=bD.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標(biāo)系中,四邊形ABCD是梯形,AD∥BC,E是BC的中點,BC=12,點A坐標(biāo)是(0,4),CD所在直線的函數(shù)關(guān)系式為y=-x+9,點P是BC邊上一個動點,
(1)求點D的坐標(biāo)是(5,4);
(2)當(dāng)點P在BC邊上運(yùn)動過程中,以點P、A、D、E為頂點的四邊形是否能構(gòu)成平行四邊形,若能,求出BP的長;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.若關(guān)于x的方程x2-(m+5)|x|+4=m恰有3個實數(shù)解,則實數(shù)m=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB為⊙O的直徑,點C為圓外一點,連接AC、BC,分別與⊙O相交于點D、點E,且$\widehat{AD}$=$\widehat{DE}$,過點D作DF⊥BC于點F,連接BD、DE、AE.
(1)求證:DF是⊙O的切線;
(2)試判斷△DEC的形狀,并說明理由;
(3)若⊙O的半徑為5,AC=12,求sin∠EAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖是一條河,A、B是對岸兩點(AB垂直河岸),某同學(xué)站在B點,在不能到達(dá)對岸的情況下,請你幫他設(shè)計至少兩種方案求出A、B之間的距離,并請說明理由.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久草福利视频 | 91tv亚洲精品香蕉国产一区 | 欧美午夜视频在线观看 | 久久精品影视 | 亚洲精彩视频在线观看 | jizz国产免费 | 日本在线观看网站 | 久久三区 | 欧美一区二区人人喊爽 | 一区二区免费看 | 青青草久草 | 91亚洲精品视频 | 日韩精品久久久久 | 欧美八区 | 成人av电影免费在线观看 | 久久国产欧美日韩精品 | 成人在线影视 | 欧美成人中文字幕 | www日韩| 91国偷自产一区二区三区亲奶 | 久久综合久色欧美综合狠狠 | 亚洲国产情侣自拍 | 九九综合九九 | 国产精品第一国产精品 | 销魂美女一区二区三区视频在线 | 在线视频97 | 99在线视频观看 | 亚洲日本欧美日韩高观看 | 亚洲一区久久 | 精品毛片| 热久久免费视频 | 成人三级视频 | 国产欧美日韩 | 久久久国产视频 | 国产精品一级在线观看 | 欧美三级视频 | 日韩在线中文字幕视频 | 久久久99日产 | 成人一区二区av | 91在线成人 | 日本中文字幕在线视频 |