A. | 3 | B. | 6 | C. | 3或8 | D. | 2或8 |
分析 因為如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因為AD∥BC,如果兩角相等,那么M與D重合,顯然不合題意,故應分兩種情況進行討論.
解答 解:因為如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因為AD∥BC,如果兩角相等,那么M與D重合,顯然不合題意,故應分兩種情況進行討論.
①如圖1,當∠ADN=∠BEM時,那么∠ADB=∠BEM,
作DF⊥BE,垂足為F,
tan∠ADB=tan∠BEM.
AB:AD=DF:FE=AB:(BE-AD).
即2:4=2:(x-4).
解得x=8.
即BE=8.
②如圖2,當∠ADB=∠BME
而∠ADB=∠DBE,
∴∠DBE=∠BME,
∵∠E是公共角,
∴△BED∽△MEB,
∴$\frac{DE}{BE}$=$\frac{BE}{EM}$,
BE2=DE•EM,
∴BE2=$\frac{1}{2}$[22+(x-4)2],
∴x1=2,x2=-10(舍去),
∴BE=2.
綜上所述線段BE為8或2,
故選D.
點評 本題考查相似三角形的判定和性質、銳角三角函數、平行線的性質等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考?碱}型.
科目:初中數學 來源: 題型:選擇題
A. | (x-$\frac{1}{2}$)2=0 | B. | (x-$\frac{1}{2}$)2=$\frac{1}{2}$ | C. | (x-1)2=$\frac{1}{2}$ | D. | (x-1)2=0 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ①③ | B. | ①②③ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com