分析 (1)延長AO交⊙O于點(diǎn)F,連接CF,延長BO交⊙O于點(diǎn)E,連接DE,根據(jù)圓周角定理得出∠EDB=∠FCA=90°,故可得出△DEB≌△CFA,由此得出結(jié)論;
(2)延長AO交⊙O于點(diǎn)F,連接CF,延長BO交⊙O于點(diǎn)E,連接DE,CD,OD,OC,求出∠COA的度數(shù),再由三角形外角的性質(zhì)得出∠EOA的度數(shù),由弧長公式即可得出結(jié)論;
(3)過O作OG⊥AC于G,OH⊥BD于H,連接OM,根據(jù)垂徑定理得到AG=$\frac{1}{2}$AC,BH=$\frac{1}{2}$BD,推出四邊形OGMH是正方形,根據(jù)正方形的性質(zhì)得到GM=HM=OG=OH,得到AM=BM,解直角三角形得到AM=BM=2+2$\sqrt{3}$,根據(jù)全等三角形的性質(zhì)得到∠B=∠A=30°,求得∠AOB=150°,于是得到結(jié).
解答 (1)證明:延長AO交⊙O于點(diǎn)F,連接CF,延長BO交⊙O于點(diǎn)E,連接DE,
∵BE,AF是⊙O的直徑,
∴∠EDB=∠FCA=90°.
在△DEB與△CFA中,
∵$\left\{\begin{array}{l}{∠EDB=∠FCA}\\{∠B=∠A}\\{EB=FA}\end{array}\right.$,
∴△DEB≌△CFA(AAS),
∴AC=BD;
解:(2)延長AO交⊙O于點(diǎn)F,連接CF,延長BO交⊙O于點(diǎn)E,連接DE,CD,OD,OC,
∵∠A=30°,OA=OC,
∴∠COA=180°-30°-30°=120°.
∵∠A=∠B=30°,AC⊥BD,
∴∠EOA+∠A=60°,
∴∠EOA=30°,
∴∠DOE=60°,
∴∠COD=30°,
∴l(xiāng)${\;}_{\widehat{CD}}$=$\frac{30πR}{180}$=$\frac{2}{3}$π;
(3)過O作OG⊥AC于G,OH⊥BD于H,連接OM,
則AG=$\frac{1}{2}$AC,BH=$\frac{1}{2}$BD,
∵AC=BD,
∴OG=OH,AG=BH,
∴四邊形OGMH是正方形,
∴GM=HM=OG=OH,
∴AM=BM,
∵OA=4,∠A=30°,
∴AG=2$\sqrt{3}$,GM=HM=OG=OH=2,
∴AM=BM=2+2$\sqrt{3}$,
在Rt△AGO與Rt△BHO中$\left\{\begin{array}{l}{AO=BO}\\{OG=OH}\end{array}\right.$,
∴Rt△AGO≌Rt△BHO,
∴∠B=∠A=30°,
∴∠AOG=∠BOH=60°,
∴∠AOB=150°,
∴S陰影=S扇形+S△AOM+S△BOM=$\frac{150•π×{4}^{2}}{360}$+2×$\frac{1}{2}×$(2+2$\sqrt{3}$)×2=$\frac{20π}{3}$+4$\sqrt{3}$+4.
點(diǎn)評 本題考查的是垂徑定理,扇形面積的計算,全等三角形的判斷和性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com